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FOREWORD

This report was prepared by the Infrared and Optics Division of the
Environmental Research Institute of Michigan. The work was sponsored by

the Air Force Office of Scientific Research/AFSC, United States Air
Force, under Contract No. F49620-82-K-0018.

This interim scientific report covers work performed between 1
March 1983 and 29 February 1984. The contract monitor is Dr. Henry

Radoski, Directorate of Physical and Geophysical Sciences, AFOSR/NP,

Building 410, Bolling Air Force Base, D.C. 20332. The principal

investigator is James R. Fienup. Major contributors to the effort are
James R. Fienup and Christopher C. Wackerman. Additional contributors
to the effort are Thomas R. Crimmins and Susan C. Elm.
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SUMMARY

This report describes the results of the second year of a

three-year research program to investigate methods for obtaining

diffraction-limited images of space objects, despite the turbulent

atmosphere, by reconstructing images from data provided by optical

interferometers (particularly stellar speckle interferometry).

Accomplishments include the following. (1) Improved image

reconstruction algorithms were developed. (2) A better understanding of

modes of stagnation of algorithms was developed. (3) The performances
of the shift-and-add image formation method and of one recursive

algorithm were investigated. (4) A second recursive algorithm was shown

to suffer from a uniqueness problem. (5) A potential new remote sensing

application of the iterative reconstruction algorithms was explored.
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DIFFRACTION-LIMITED IMAGING OF SPACE OBJECTS II
1 March 1983 to 29 February 1984

INTRODUCTION AND OBJECTIVES

This report describes the results of the second year's effort in a

three-year research program to investigate methods of obtaining

diffraction-limited images of space objects, despite the turbulent

atmosphere, by reconstructing images from data provided by optical

interferometers (particularly stellar speckle interferometry). ,

Atmospheric turbulence typically limits the angular resolution of

earth-bound optical telescopes to one second of arc or worse, which is

fifty times poorer than the theoretical diffraction limit of a 5-meter

optical telescope. It is possible to gather diffraction-limited

information through the turbulent atmosphere by a variety of

interferometric techniques, including Michelson stellar interferometry

[1], intensity interferometry [2), amplitude interferometry [3), and

stellar speckle interferometry [4, 5]. However, this diffraction-

limited information is in the form of the modulus (magnitude) of the

Fourier transform of the object being viewed. Until recently only the

autocorrelation of the object, but not the object itself, could be p

reconstructed from this data, except for special cases.

In recent years an iterative method [6-9] has been developed for

reconstructing an object from its Fourier modulus, thereby making

possible the reconstruction of diffraction-limited imagery from

Interferometer data. The algorithm utilizes the measured Fourier

modulus data as well as (1) the a priori information that the object's
spatial (or angular) brightness distribution is a nonnegative function

,-,.. .. . - . ..-.. -.- . .,. ...,.., ,. .. ..,: : . .... ;. . .,.. . . -. ,...-. ....- , -,-. -.- - - -. . -., ,,. .., , , -. . .. ., ,, , ..,..1.. ,,_ .,.-
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and (2) information about the object's diameter which can be computed

from the autocorrelation function. The algorithm and its numerous

applications is described in detail in Appendix A [9]. -

The goal of the program is to further investigate and develop this

method of obtaining diffraction-limited images. Included in the

three-year program are investigations into improving the reconstruction I
algorithm, developing methods for processing noisy astronomical data,

studying the uniqueness of the reconstruction, and investigating ways to

increase the spectral bandwidth of stellar speckle interferometry. In

the second year of the effort, the emphasis was on developing new and

improved reconstruction algorithms. Initial studies of the uniqueness

problem and of the properties of astronomical data were also begun.

The research accomplishments for the second year are summarized in

Section 2 and are described in more detail in Sections 3 through 8 and

in the Appendices. References are listed in Section 9.

2
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2
RESEARCH ACCOMPLISHMENTS

The second year of research effort can be divided Into seven major
topics.

1. The new recursive algorithm [10] described in last
year's report [11] was implemented and tested both on
noise-free and on noisy Fourier modulus data.

2. Improvements in the iterative Fourier transform
P reconstruction algorithm [6-8] were made that enable one to

reconstruct difficult objects that previously defied

reconstruction attempts.

3. Alternative iterative algorithms were devised.

4. Investigations were made into the problem of stripes p
in the reconstructed images.

5. The shift-and-add algorithm was implemented and
tested on a complicated extended object.

6. Results were obtained indicating a possible newp
remote sensing application of the iterative reconstruction
algorithm.

7. Recently published claims regarding the uniqueness of
phase retrieval when the edges of the object are known were

shown to be false by counterexample [12).

Recent publications arising from this work are References 10 and
12-18. Reference 9 is noted as a recent related publication arising
from a previous research program [19) and is included as Appendix A.
References 10, 16, 17, 18 and 12 are included as Appendices B, C, D, E
and F, respectively.

3
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The seven topics are briefly described in the remainder of this

section and are described in more detail in Sections 3 to 8 and in the

Appendices.

2.1 NEW RECURSIVE ALGORITHM

As described in last year's report [11] and in Appendix B, a new

recursive algorithm has been developed which is capable of •

reconstructing an object from its autocorrelation function, which can be

computed from the modulus of its Fourier transform. It works for

objects having latent reference points--unresolved points within the

object field that are not sufficiently far from the main part of the lob

object to satisfy the condition for holography, but sat 4  weaker
conditions. The recursive algorithm was coded on ..,mputer and

exercised on two different types of objects using autocerrelations

having a variety of signal-to-noise ratios. As expected --c recursive

algorithm was fairly sensitive to noise, making it less practical for

real-world applications than the iterative Fourier transform algorithm

[6-8). Improvements were made in the recursive algorithm to make it

somewhat less sensitive to noise. A more detailed description of this

work is given in Section 3.

2.2 IMPROVEMENTS IN THE ITERATIVE ALGORITHM

The Iterative Fourier transform algorithm has been particularly

successful on objects having complicated shapes, such as satellites [6,

7, 17]. However, for some types of objects, such as those whose support

fills a square, the algorithm has a tendency to stagnate without finding

a solution [20]. Two modifications of the basic approach were

demonstrated for overcoming this problem. The first was to employ the
defogging method of Bates and Fright [21]. The second modification is

to break the symmetry of the partially reconstructed image in order to

4 _
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allow the algorithm to converge to one of the two possible solutions.
This is described further and an example is shown in Section 4.

I

2.3 ALTERNATIVE ITERATIVE ALGORITHM

The theoretical justification for the input-output iterative
Fourier transform algorithm [6-9] alludes to a control theory

point-of-view. Yet rigorous control theory had not actually been

applied to the problem. Alternative algorithms based on control theory

are presented in Section 5. Further elaboration of these algorithms and

their implementation and testing will be required to determine whether p
they will offer improved performance over existing algorithms.

2.4 INVESTIGATION OF STRIPES

In some cases the output of the iterative algorithm has the

appearance of original object but with a pattern of low-contrast stripes

superimposed [22, 17]. The phenomenon of stripes appearing in the

reconstructed image was extensively investigated. Properties of the

phase of the Fourier transform of the striped image were studied.

Several methods for removing the stripes were investigated. We feel

that we are on the threshold of solving this problem, as described in

Section 6. When this problem is completely solved, then it will be
possible to answer the question of the uniqueness of the reconstructed

image (see Appendix D) more definitively.

2.5 SHIFT-AND-ADD

The shift-and-add method of imaging from short-exposure

astronomical images has in the past been exercised primarily for very
simple objects having in their field-of-view very bright unresolvCd

points [23, 24]. The shift-and-add method was attempted both on a

5



point-like object and on a more realistic object--a satellite having

strong glints. Although the result for the point-like object was very

good, the result for the extended object was very poor, indicating that

the shift-and-add method is not appropriate for complicated extended

objects. These results are shown in Section 7.

2.6 NEW ITERATIVE APPLICATION

A new remote sensing application for the iterative Fourier

transform algorithm was developed under ERIM internal funding [25]. It

permits the operation of, say, a synthetic aperture radar system having

reduced performance requirements for the phase stability of its local

oscillator and motion compensation. It might also be useful for the

electron microscopy phase retrieval problem. It involves the iterative

retrieval of phase using a single intensity measurement plus a shape

constraint on the object or upon the pattern of radiation by which the

object is illuminated. Under the present program the issue of the shape

constraint was explored further. It was found that certain interesting

shapes are sufficient for reconstructing a complex-valued object p

function from the magnitude of its Fourier transform. The

reconstruction algorithm and some reconstruction results are shown in

Section 8.

2.7 AMBIGUITY OF PHASE RETRIEVAL USING BOUNDARY CONDITIONS

Claims have been made that an object can be uniquely reconstructed

from its Fourier modulus via the autocorrelation function if the values p

of the edges of the object are known [26]. It is shown in Appendix F

that knowledge of the autocorrelation function and of the boundary

values of the object are not sufficient to uniquely specify the object

in all cases. It is further shown how and why the recursive algorithm p

of Hayes and Quatierl [26] fails for the nonunique cases. Recently it

6 -I"T
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has also been shown that the recursive algorithm [26) can fail even when

the object is uniquely related to its Fourier modulus. An example of

where it fails for a unique object is in the case of an object like that

shown in Figut - la of Appendix F but with the value of 4 in the second

column from the right and the second line from the top replaced by any

other value. This last result will be described in more detail in a
later report. ,,•

7

-'..



SRIM

3
EXPERIMENTAL RESULTS USING NEW RECURSIVE ALGORITHM

As described in Appendix B, a new recursive algorithm has been

developed for reconstructing an object from its autocorrelation
function, which can be computed from the modulus of the Fourier

transform of the object. It is applicable to objects having latent

reference points [10], and knowledge of the support of the object may be

required. In this section examples of reconstruction experiments using

the recursive algorithm are shown.

Figure 3-1 shows results of the recursive reconstruction algorithm

for which the Fourier modulus (or autocorrelation) data was corrupted

with varying amounts of noise. The object consists of an equilateral

right triangle of 16 pixels on each side having a brighter rectangle and

a brighter square imbedded in it. It is assumed known that the object's

support is the triangle. Figure 3-1(a) shows the original object.

Figure 3-1(b), (c) and (d) are the reconstructed images when the

root-mean-squared (RMS) error of the Fourier modulus data was 0.005175,

0.05585 and 0.01795, respectively. The RMS error of these reconstructed

images is 0.0400, 0.6088 and 0.1390, respectively. That is, for the
noisiest case of Figure 3-1(c), a 5.6 percent error in the data resulted

in a 60.9 percent error in the reconstructed image.

To get a feel for how bad a 60 percent error is, consider the

following. Suppose the object were constant, equal to unity, over the

known region of support (within the triangle). If the reconstructed

image were a set of random numbers uniformly distributed between 0 and

b, then the rms error for the optimum value of b can be shown to be 50

percent. That is, the reconstructed image shown in Figure 3-1(c),

having RMS error of 60 percent, is worse than a reconstructed image

8
I-
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consisting of random numbers.

By comparison, in experiments using the iterative Fourier transform
algorithm (on a different object), a 5% error in the data resulted in a
20% error in the reconstructed image [22). Therefore from this limited
experience it appears that the recursive algorithms is, as predicted
[10], highly sensitive to noise. The iterative Fourier transform
algorithm would appear to be the preferred method of image
reconstruction.

For the triangular support case, one can generate as many as three
separate estimates for each value, one associated with each of the three
corner pixels. In the absence of noise these three reconstructions are
identical, but with noise present they will in general be different, and

an improved algorithm would decrease noise effects by averaging the
three estimates. This method was tried and the following was
discovered. The computation of a value depends not only the corner
pixel but also on a number of previously reconstructed values as well.
In the presence of noise each of these reconstructed values will have
some error associated with it, and the more of them that are used to
reconstruct a new value, the more error that new value will have. It
was found that the estimate that is generated from the maximum number of
previously reconstructed values has accumulated so much error that
including its value in the average degrades rather than improves the
reconstruction. The optimum number of estimates to use was found to
depend on the signal-to-noise ratio and on distance from the edges of
the triangle. For most values, only one or two estimates was optimal.
This resulted in a modest improvement over the algorithm employing only
a single estimate.

10
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4
IMPROVEMENTS IN THE ITERATIVE FOURIER TRANSFORM ALGORITHM

0

Although the iterative Fourier transform algorithm has been shown

to be successful for space objects such as satellites [6, 7, 17], it can

have problems converging for some other types of objects. For example, -.....

for the object shown in Figure 4-1(a), a picture of a bird bounded by a ;0.

square, the algorithm has a strong tendency to stagnate without finding

a solution [20]. Two methods were demonstrated for overcoming this

problem and converging to a solution: the defogging method of Bates and

Fright [21] and a new method of temporarily using a reduced-area

asymmetric support constraint. The latter method seems to be the more

important of the two.

The defogging method attempts to compensate for the fact that a

low-contrast object on a bright background causes very little

"interference," that is, its Fourier transform has not much structure.

The defogging method consists of reducing the large central lobe of the

Fourier modules, raising the relative values at the higher spatial

frequencies. In the image domain this corresponds to reducing any

slowly-varying bias-like (or fog) component of the image, thereby

emphasizing the finer-structure details. Phase retrieval algorithms

that work poorly on a low-contrast image tend to work better on the

defogged version of the image. After the defogged image is

reconstructed, the slowly-varying fog component is added back in. As a

final step the refogged image is refined by further iterations of phase

retrieval.

A reduced-area asymmetric support constraint is used for types of

objects which often cause the iterative Fourier transform algorithm to
stagnate on a partially reconstructed image. Recall that there is .

11% "
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Figure 4-1. Use of Asymmetric Support Constraint. (a) Original
object; (b) output image from iterative Fourier transform
algorithm which has stagnated; (c) output image after
application of reduced-area support constraint followed by
further iterations.
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always a two-fold ambiguity: f(-x, -y) and f(x, y) have the same Fourier

modulus. The ambiguous image f(-x, -y) is just f(x, y) rotated by 1800

which is equivalent to being reflected through the origin. When there

is a symmetric support as in the case of the object shown In Figure

4-1(a), the algorithm may stagnate with an output such as the one shown

in Figure 4-1(b), which has features of both the object and the 1800

rotated object. The output image changes little with further

iterations. Apparently the algorithm gets stuck when it is half-way

between the two different solutions: it is unable to shake one off and

converge to the other. In the case where an asymmetric support

constraint is known, this particular mode of stagnation tends not to

occur since the asymmetric support constraints moves the solution toward

f(x, y) and away from f(-x, -y).

The method of using a reduced-area asymmetric support constraint is

as follows. A support constraint is defined that includes one side

(including edges) of the object but not the other side and edges. This

support constraint is chosen to be smaller than the known support of the

object and to be as asymmetric as possible, so that it has little in

common with the 180 0 -rotated version of the support constraint. A few

iterations are then performed with the reduced-area asymmetric support

constraint (rather than using the correct support constraint). It is

hoped that this causes one of the two images, f(x, y) or f(-x, -y) to be

preferentially enhanced over the other. After switching back to the

correct support constraint, either f(x, y) or f(-x, -y) will be strong .T.

enough compared with the other that upon further iterations the

algorithm converges to the stronger one and away from the weaker one.

Figure 4-1(c) shows the reconstructed output image after using both

the defogging method and the reduced-area asymmetric support constraint

for a few iterations then continuing with further iterations using the

correct support constraint and the original Fourier modulus data.

13 5
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Comparing it with the output image shown in Figure 4-1(b), it is seen
that these techniques yielded much better results in this case.

These methods have been exercised in only very limited circum-

stances and have not yet been optimized and automated. Further work to

develop these promising methods is clearly called for. Such auxiliary

procedures are not necessary for the objects that are easier to

reconstruct but are very important for the more difficult cases.

14
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5
ALTERNATIVE ITERATIVE ALGORITHMS

The iterative Fourier transform algorithm, which is described in

detail in Appendix A, works very well in a wide range of situations but
converges slowly or not at all in some cases. Furthermore it is always
desired to arrive at a solution using fewer iterations and less computer

time. For these reasons we are always looking for ways to improve the
existing algorithms or devise alternative algorithms that converge

faster. The two algorithms shown in Figures 5-1 and 5-2 are examples of

alternative algorithms that have been conceived. They were arrived at0
from the point of view of control theory.

In the first algorithm, depicted in Figure 5-1, it is assumed that

the individual sidelobes of the complex Fourier transform of the object
can be modelled by a fairly simple mathematical formula having a small
number of free paraiizters. By curve fitting each lobe of the Fourier

modulus (amplitude) to the model, one could determine the parameters and

thereby determine the phase. One would first curve fit one larger lobe,

compute the magnitude of the model from the fitted parameters, and
subtract that model from the modulus measurement. Smaller lobes would
be curve-fitted and subtracted resursively from the residual modulus.
After all the lobes are modelled, the corresponding phase would be

combined with the measured modulus and the image would be computed by
inverse Fourier transformation. It is yet to be determined whether the
Fourier transform can be modelled as described above.

In the second algorithm, shown in Figure 5-2, the difference in the

phase of the Fourier transform of the current estimate and that of the

previous estimate is multiplied by a gain factor (K) and added to the
previous phase estimate. This is similar to previous iterative0

15
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algorithms except that the roles of the two domains are reversed.

Both the methods described above, as well as others, merit further

research and implementation.
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6
INVESTIGATION OF THE STRIPES PHENOMENON

In a number of cases the iterative Fourier transform algorithm has
converged almost all the way to a solution, but then stagnates at an

output image that looks like the original object but having a set of

stripes superimposed [17, 22] (see Appendix D). In most cases the

stripes are of such low contrast as to be hardly noticeable, but

occasionally the contrast of the stripes has been high enough to be

objectionable. Since the Fourier transform pair is not in perfect

agreement with the data and constraints in this condition, the striped
images is at a local, rather than the global, minimum of the error, and

therefore it does not represent a lack of uniqueness. Although earlier

attempts at solving this problem (the stagnation at a striped imaged)

failed, we are currently developing methods that will eliminate the

stripes.

Since an output image having stripes has a Fourier modulus equal to

the measured (assumed to be the correct) Fourier modulus, the stripes

must be due to the effects of phase errors. The phase errors must be

located in small regions of the Fourier domain in order to produce such
a regular striped pattern, with the locations of the regions in the
Fourier domain being related to the spatial frequency (spacing) and

orientation (angle) of the stripes.

A first attempt at eliminating the stripes was to add noise to the

input image after stagnation at a striped output had occurred. The hope
was that the added noise would move the solution far enough away from
the local minimum so that further iterations of the iterative Fourier
transform algorithm would lead to the global minimum rather than falling

back into the same local minimum. When this was tried it was found that
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after further iterations the algorithm did indeed fall back into the

same local minimum, even when the amount of noise added was very large.

A second attempt at solving the stripes problem relied on the

knowledge that the phase error was a localized phase error in the

Fourier domain. It was found that if a constant phase was added to the

phase of the Fourier transform of the object in a given region of the

Fourier domain (and in order to preserve the Hermitian property of the

Fourier transform, the same constant phase was subtracted in the

symmetric region of the Fourier domain), then the corresponding image

would look like the original object but with a pattern of stripes

superimposed. The resulting synthesized images thus produced had an

appearance very much the same as the striped images produced by the

iterative algorithm. However, when these images were used as the input

to the iterative algorithm, the synthesized stripes immediately went

away and the algorithm quickly converged to the true image. This

constrasted sharply with the stripes produced by the iterative

algorithm, which would not go away. Therefore the phase errors that

cause the stripes problem are more complicated than simple constant S
phase errors over some region of the Fourier domain. This was further

shown by attempts to eliminate the stripes by adding various constant

phase errors at appropriate regions of the Fourier domain. All such

attempts failed to remove the stripes.

A third attempt at removing the stripes involved the addition of

Blaschke-like phase functions to the Fourier transform. A Blaschke-like

phase is the phase of the unity-modulus function

B(u, z) - 1 - u/z
' - u/z
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where u is a Fourier-domain coordinate and z =a + lb. The Blaschke-
like phase is global in effect but has its most rapid variation within a

region about u a b. Varying phase error corrections of this form were

alofon to be unsuccessful in solving the stripes problem.

Most recently we have developed two procedures that should solve
the stripes problem In most cases. They are based upon two facts: -

1. The phase errors that produce the stripes are located
in small regions of the Fourier domain, and

2. Output images arrived at by the iterative Fourier
transform algorithm started with different initial inputs of
random numbers are unlikely to have the same pattern of
stripes.

In the first method, three output images are produced by the
iterative Fourier transform algorithm using three different initial
inputs of random numbers. The three output images are translated so as
to be centered at the same point in order to remove any linear phase
difference In their Fourier transforms. Then at each point in the
Fourier domain, the complex values of the three Fourier transforms are
compared. The value whose distance from the other two values is the
greatest is discarded and a new value is formed by taking the average of
the remaining two (closest) values. In this manner, if in a given

* region of the Fourier domain one of the three has a phase error (related
to the stripes or otherwise), that phase error is eliminated.

In the second method only two different output images need to be
*produced by the iterative Fourier transform algorithm. Although the

stripes are typically of highest contrast where the object is brightest,
they also exist outside the known support of the object. So by Fourier
transforming the region of the output image having only stripes (outside
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the support of the object), the regions of the Fourier domain having the

phase error can be identified. Then a new phase estimate is made by
using the phase of the Fourier transform of the first output images P

where it is not influenced by the phase error, and using the phase of
the Fourier transform of the second output image where the first was

influenced by the phase error.

In both methods above, after the new estimate is formed, further

iterations should be performed to allow it to converge closer to a

solution.

These methods of correcting the stripes are automatic in the sense

that no human judgement or decisions are required during their

operation.

Both methods were exercised on a single example and were found to

- perform very well. Further experimentation with these methods is

, required to determine their effectiveness in a wider variety of

circumstances. 1-
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7
EXPERIMENTAL RESULTS USING SHIFT-AND-ADD

Shift-and-add [23, 24] is a method of reconstructing images of

astronomical objects from multiple short-exposure images. It consists

of shifting all the images so that their maximum values all lie at the

same coordinate, then adding (or averaging) them all. This has been

shown to work well for objects consisting of a collection of delta

functions (points) [23, 24], but it was not demonstrated for realistic

extended objects, such as satellites. We implemented the shift-and-add

method on the computer and exercised it both on an object consisting of *

a collection of delta functions and on an extended object.

Figure 7-1(a) shows an object consisting of three

delta-function-like points having relative brightness of 100:20:10.

Simulated point-spread functions from a telescope including atmospheric

turbulence [22] were convolved with the object to arrive at simulated

blurred images, an example of which is shown in Figure 7-1(b). Figure

7-1(c) shows the result of shifting and adding 156 blurred images. The

three points can be clearly seen, although they are slightly blurred and

each is surrounded by a fog. We took shift-and-add one step further by

combining it with a form of subtractive deconvolution related to the

CLEAN method. An estimate of the effective point-spread function was

found by applying shift-and-add to a single point. The outputs from

shift and add were then CLEANed by subtracting from the image a version

of this point-spread function shifted and scaled to match the peak of

the brightest point in the image, and the brightness and position of the

peak was noted. The second and third points were CLEANed in a similar

fashion in succession. Figure 7-1(d) shows the brightness and positions

of the three CLEANed peaks. The brightness and positions are exactly

the same (to within an overall translation) as the brightness and
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positions of the points in the original object. Although no noise was
present in the data (but only 156 blurred images were used), this is a
very impressive result, demonstrating the power of the shift-and-add
method for this type of object.

Figure 7-2 shows a similar experiment for an extended object. The
object, shown in Figure 7-2(a), was purposely chosen to be one that
satisfies the requirement that it have bright delta-function-like
components. That is, it should be one of the easier extended objects
for shift-and-add to reconstruct. Two examples of the blurred images of
the object are shown in Figures 7-2(b) and (c). The result of using
shift-and-add on 156 blurred images is shown in Figure 7-2(d). In this

case there is very little information about the original object in the
shift-and-add image. Further processing using the CLEAN method did not
improve the result.

This one set of experiments was not sufficient to fully delineate
the types of objects for which shift-and-add is effective, but we did
demonstrate that shift-and-add works very well for an object consisting
of a small number of delta-function-like points dominated by a brightest
one, but works very poorly for an extended object, even one containing
isolated bright points.
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Figure 7-2. Shift-and-Add Algorithm for an Extended Object.
(a) Original object; (b), (c) images blurred by atmo-
spheric turbulence; (d) output image from shift-and-add.L
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*l RECONSTRUCTION OF COMPLEX-VALUED OBJECTS USING SUPPORT CONSTRAINT

As discussed elsewhere in this report, for the astronomy problem

one has In the object domain a nonnegativity constraint and a weak

(loose) support constraint. There are however some problems for which

the object is complex-valued or bipolar, precluding a nonnegativity

constraint, but for which the support constraint is much stronger

(tighter). The same iterative reconstruction algorithm as for the

astronomy problem can be used, only without applying the nonnegativity

constraint. From the theory of Bruck and Sodin [27], one might expect

the solution to usually be unique. For supports known to have certain

shapes, such as a triangular shape, the solution is known to be unique

(see Appendix B).

Reconstruction experiments using only a support constraint were

performed on objects having various support constraints to test the

importance of different types of support constraints. Figure 8-1(a)

shows an object having triangular support and nonzero values in its

three corners. These conditions ensure that the object is uniquely

related to its Fourier modulus (see Appendix B). The image shown in

Figure 8-1(b) was reconstructed from the Fourier modulus and the a

priori knowledge of the triangular support using the iterative Fourier

transform algorithm. Nonnegativity was not used although the object

happens to be nonnegative. In this case the support was known very

precisely. The algorithm converged very rapidly to the correct

solution.

Since the uniqueness proof requires the three corners to be

nonzero, we wanted to determine the importance of nonzero corners to the

iterative algorithm. The same experiment was performed for the object
shown in Figure 8-1(c), which is identical to the object shown in Figure

27
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Figure 8-1. Examples of Reconstruction from Fourier 14odulus.
(a) Object in triangle with bright corners, (b) recon-
structed image; (c) object in triangle with zeroed corn-
ers, (d) reconstructed image; (e) object in triangle with
tapered edges, (f) reconstructed image.
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8-1(a) but with the corners zeroed out. The image shown in Figure

8-1(d) was reconstructed from its Fourier modulus and is the correct

solution, but more iterations were required in this case than for the

object having three bright corners. Therefore the brightness of the

corners does play a role, but not a crucial one. The effect of the

sharpness of the edges of the object was also investigated. A third

object, shown in Figure 8-1(e), which is identical to the object shown

in Figure 8-1(c) except that its edges are tapered rather than being

abrupt, was formed. The image resulting after over a hundred iterations

of the iterative Fourier transform algorithm is shown in Figure 8-1(f).

Although the image is very recognizble, it has a noisy appearance. The

iterative algorithm found it much more difficult to reconstruct this

image than the ones with abrupt or sharp edges. Therefore it appears

that edges (although not absolutely essential) are very important to the

ability of the iterative algorithm to reconstruct images using only a

support constraint in the object domain.

Under an internally funded ERIM program, these results were

extended to the case of complex-valued objects for applications such as

synthetic-aperture radar (SAR) [25]. Since those results are pertinent

here, they will be briefly reviewed. The idea is to have a SAR sensor

that does not require an accurate local oscillator, phase-coherent chirp

pulses, or compensation of sensor platform motion. This could be done

if one could reconstruct the image without accurate knowledge of the

phase of the SAR signal history. This might be possible by using the

iterative Fourier transform algorithm if a strong support constraint

were present. One might have, for example, the ability to Illuminate

the target area with an illuminaton pattern of known shape or have the

far-field pattern of the receive antenna accept reflected radiation from

an area of known shape. The modulus information together with the

support (beam shape) constraint could then be combined by the iterative

Fourier transform algorithm to arrive at a diffraction-limited image.
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Figure 8-2 shows an example of a reconstruction experiment [25] of

this type. Figure 8-2(a) shows the magnitude of a 64 x 64 pixel
sub-area of a complex-valued SEASAT SAR image of an area of land. A

binary mask was formed to define the illumination pattern of a

hypothetical antenna. The illumination pattern consists of a pair of

ellipses, each of 3:1 aspect ratio. A pattern consisting of two

separated parts was chosen because theory indicates that the solution is

more likely to be unique in that case [13]. The object, the magnitude

of which is shown in Figure 8-2(b), was obtained by taking the product

of the image shown in Figure 8-2(a) and the illumination pattern. The

modulus of the Fourier transform of the object was computed and is shown

in Figure 8-2(c). This is equivalent to the modulus of the SAR signal

history that would have been collected had the terrain been illuminated

by the fixed illumination pattern consisting of the two ellipses. The

Fourier modulus was then used together with the known illumination

pattern as a support constraint to reconstruct the image which is shown

in Figure 8-2(d). The reconstruction was essentially perfect.

I

Figure 8-3 shows further examples of similar reconstruction

experiments performed under the current effort. The goal of this set of

experiments was to explore the effects of employing different types of

support constraints. Specifically, we wanted to explore what effect the

separation of the parts of the support had on the success of the

iterative reconstruction algorithm. As shown in Figure 8-2, for widely

separated support parts, the iterative algorithm performed very well.

Figure 8-3(a) and 8-3(b) show the same object and reconstructed image,

respectively, but at a different scale. Figures 8-3(c) and 8-3(d) show

a second object and reconstructed image, respectively, for a case in

which the separation between the two parts of the support is much

smaller. Again the reconstructed image is very faithful. Figure 8-3(e)
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Figure 8-2. Example of Reconstructing a Complex-Valued SAR Image from
D the Modulus of Its Fourier Transform Using an Illumina-

tion-Pattern Support Constraint (a Pair of Ellipses).
(a) Magnitude of terrain image with broad illumination
pattern; (b) magnitude of ideal terrain image with special
illumination pattern; (c) Fourier (phase history) modulus;
(d) magnitude of reconstructed image. (Taken from [25].)
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and 8-3(f) shows a third object and reconstructed image, respectively,

for a case in which the two parts overlap (that is, the support is
contiguous). In this case the reconstructed image, even after several

hundred iterations, does not closely resemble the object, although upon

close inspection one can find some features in common. For a fourth

case (not shown) in which the support consisted of a single ellipse, the

iterative reconstruction algorithm did not produce a recognizable image

after several hundred iterations. Figure 8-3(g) and 8-3(h) show a fifth

object and reconstructed image, respectively, for a case in which the

support was shaped like a donut having a hole offset from the center.

In this case the reconstructed image is very faithful. This last

example is curious since it does not have separated parts, yet a

one-dimensional cut through the center of the support does have

separated parts.

The examples of Figure 8-3 demonstrate that the separated nature of

the support does have an important effect on the succes of the iterative

reconstruction algorithm, and that further investigations along these

lines is warranted.

The ability demonstrated above to reconstruct a complex-valued

image from the modulus of its Fourier transform using only a support

constraint may have very important implicatons for fine-resolution

coherent imaging systems such as SAR.
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Reconstruction and synthesis applications of an iterative
algorithm

J. R. Fienup Abstract. This paper reviews the Gerchberg-Saxton algorithm and varia- *
Environmental Research Institute of tions thereof that have been used to solve a number of difficult recon-

Michigan struction and synthesis problems in optics and related fields. It can be -'-'-
P.O. Box 8618 used on any problem in which only partial information (including both
Ann Arbor, Michigan 48107 measurements and constraints) of the wavefront or signal is available in

one domain and other partial information is available in another domain
(usually the Fourier domain). The algorithm combines the information in
both domains to arrive at the complete description of the wavefront or
signal. Various applications are reviewed, including synthesis of Fourier
transform pairs having desirable properties as well as reconstruction
problems. Variations of the algorithm and the convergence properties of
the algorithm are discussed.

S

I. INTRODUCTION ties, or a priori conditions: -
There exist many problems that are very difficult to solve in Given a set of constraints placed on a function and another *
astronomy. \-ray crystallography, electron microscopy. spec- set of constraints placed on its transform, find a transform
troscopN. %aefront sensing, holography, particle scattering, pair (i.e., a function and its transform) that satisfies both sets
,superresolution. radar signal and antenna synthesis, filter design, of constraints.
and other disciplines that share an important feature. These are Once a solution is found to such a problem, the question often
problem,, that inolve the reconstruction or synthesis of a remains: is the solution unique? For synthesis problems, the
N asefront (or an object or a signal, etc.) when partial information uniquetess is usually uniniportant--one is satisfied %%ith an. solu-
or constraints exists in each of two different domains. The second tion that satisfies all the constraints: often a more important prob-
dornain is usuall, the Fourier transform domain. This paper Icm is Alhether there exists ant solution that satisfies s,,hat ma. he
describes a method of combining all the available information in arbitrar% and conflicting constraints. For reconstruction prohlents.
the tsso domains to arrie at a complete description, thereby solv- tlie uniquetness properties of the solution are of central importance.
ing the problems. If many different functions satisfying the constraints could inse rise

The problems fall into tvo general categories: (I) reconstruct the to the same measured data, then a solution that is found could not
entire information about a function (an image, wavefront, signal, be guaranteed to be the correct solution. The question of unique-
etc.) when only partial information is available in each of two do- ness must be studied for each problem. Fortunatel. a, \%sill be
mains; and (2) synthesize a (Fourier) transform pair having described later, for some important reconstruction problens lie
desirable properties in both domains. A reconstruction problem solution usually ts unique.
arises when only partial information is measured in one domain, An effective approach to solving the large class of problem.
and in the other domain either partial information is measured or described above is the use of iteratise algorithm,, related to the
certain constraints are known apriori. The information available in Gerhberg-Saxton algorithm. eThe algorithms invole the iteratie - -

an- one domain is insufficient to reconstruct the function or its transformation back and forth between the two domains, with the
transform. A synthesis problem typically arises w&hen one wants the known constraints applied repetitively in each domain.
transform of a function to ha',e certain desirable properties (such as The basic algorithm is presented in Sec. 2. A number of ditferent P
uniform spectrum, los sidelobes, etc.) while the function itself applications having different types of constraints are described. .. -

must satisfy certain constraints or have certain desirable properties. and examples are shown in Sec. 3. ti Sec. 4 the consergence prop-
Because arbitrary sets of properties and constraints can be con- erties of the algorithm are discussed, and improsed %ersions of the
tradictor%, there may not esist a transform pair that is completels algorithm are revie\%ed. A brief sumnmar\ and coniments are in- .

desirable and satisfies all the constraints. Nevertheless, one seeks a cluded in Sec. 5.
transform pair that comes as close as possible to hasing the
desirable properties and satisfying the constraints in both domains. 2. THE BASIC ITERATIVE ALGORITHM

Both the reconstruction and the snthesis problems can be e\- The first published account of the iterati\e algorithm \a, it, use b
pre,,scd as follows, if the meaning of the word "constraints" is Cierchberg and Satoni to solve the electron micro, sco, Problem.
broadened t(o include an\ kind of measured data, desirable proper- For this problem both the modulus (magnitude) of a comple\-

SPIE Vol 373 Transformatons in OpticalSignalProcessing17 981 747
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valued image and the modulus of its Fourier transform are
measured, and the goal is to reconstruct the phase in both domains.
Apparently unknown to Gerchberg and Saxton, the method was in- -
vented somewhat earlier by Hirsch, Jordan, and Lesem 2 to solve a -

synthesis problem for computer-generated holograms that has a
similar set of constraints. (This will be described later in more
detail.) The method was again reinvented for a similar problem in
computer holography by Gallagher and Liu. - The fact that the '
algorithm was invented repeatedly testifies to its simplicity and ef- SATISFY SATISFY
fectiveness. FUNCTION FOURIER . -

CONSTRAINTS] CONSTRAINTS
2.1. Gerchberg-Saxton algorithm "

In what immediately follows, the iterative algorithm is described in.-
terms of its application to the electron microscopy reconstruction .
problem. An excellent treatment of the electron microscopy phase ' __'0

problem and its solution by this and other methods can be found in 9 - G Fie

Ref. 4. Later it is shown how to apply the same principles to a large
class of problems.

Suppose that the electron wave function in an image plane is Fig. 1. Block diagram of the iterative error-reduction algorithm.
described by the two-dimensional (2-D) complex-valued function

fQx) =f(x) c methods, such as Newton-Raphson, 4 for which the number of corn-
putations per iteration goes as N1.

A measure of the progress of the iterations, and a criterion b
Its Fourier transform, the wave function in a far-field diffraction which one can determine when a solution has been found, is the
plane, is given by normalized mean-squared error, which is defined in the Fourier do-

main by00 00

F(u) = F(u) eid(u) = ,[flx)l f f(x)ei 2Tu'xdx, (2) [ GkOU) - F(u) 12 du
-o 110-c

- _-__ __ __ -- (5) ._

where x and u are the vector coordinates in the spatial (image) do- 00
main and the spatial frequency (far-field diffraction) domain,
respectively. The notation used throughout this paper is that func- Flu) du

tions represented by capital letters are the Fourier transforms of the -0"
functions represented by the corresponding lower-case letters. It is
assumed that the intensity spatial distributions are measured in or in the image domain by
each domain, but the phase information is lost. Therefore, one
wishes to reconstruct (x) and O(x) from fQx) and F(u) 00

The iterative algorithm for solving this problem is depicted in (
Fig. I. One iteration (the klth iteration) of the algorithm proceeds as I gl(i) - f(x) 12 dx

follows. A trial solution for the wave function (an estimate of the I-.

wave function), gk(x), is Fourier transformed yielding E (6)

GklU) .- Gklu) exp[iOk(U)] - J;* gk(x)] . (31 f'M)2 dx .•

Then a new Fourier-domain function, GklU), is formed by replac-
ing the computed Fourier modulus by the measured Fourier It has been showrn that the algorithm conserges in the sense that Tlc
modulus, F(u) , and keeping the computed phase: mean-squared error can only decrease at each iteration.' " [he

issue of convergence will be discussed in greater detail in Sec. 4.

Gifu) - Flu) exPli~k(u)l . (4)
2.2. Error-reduclion iterative algorithm

The resulting G'(u), which is in agreement with all the known It is no%% known that with slight modifications this santc ahrorithn"
measurements and constraints in the Fourier domain, is inverse can be applied to many different problems hasing a sariet. of
Fourier transformed, yielding the wave function gi(x). The itera- available constraints or measurements.' Let the function I(') repre-
tion is completed by forming a new estimate for the wave function, sent a wavefront, an object, a signal, an antenna arra', a spectral

gk . I( x ) , which is obtained by replacing the computed modulus of density function, an electron density function, etc.. %%here \ is an
g (x) %ith the measured modulus fx) , and keeping the computed N-dimensional vector (spatial, angular, time, etc.) coordinate.
phase. Depending on the problem, f(x) may be complex %allied or real

The algorithm consists of no more than enforcing what informa- valued and, if real, may or may not be nonnegative. It, Fourier
tion is available on the wave function, Fourier transforming, im- transform, F(u), is given by Eq. (2) and is complex valued for mo,,t
posing %%hat information is asailable on the wave function's problems. The N-dimensional vector u is a (spatial, angular, time.
Fourier transform, inverse transforming, and repeating these sim- etc.) frequency coordinate. One can instead consider another
pie operations for a number of iterations. What makes the transformation of f(x), such as the Fresnel transform, %shich has - S
algorithm practical is the existence of a fast Fourier transforms been used for more than one problem. 2 - '- For simplicity of discus-
(FFT), so that the number of computations per iteration goes only sion, the Fourier transform will be assumed, but the reader should
as NlogN, %,here N is the number of samples of the function com- keep in mind that what is ,aid also applies to a number of other
puted. This compares very fasorably vith some other iterative transformations as well (although the method becomes lcss attrac-
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tive if a fast transform algorithm is not available), these expressions reduce to Eqs. (5) and (6), respectively, for the
With only slight modifications, the Gerchberg-Saxton algorithm electron microscopy problem.

can be used to solve the wide class of problems described in Sec. I. Just as in the electron microscopy problem, for problems having
Referring again to the block diagram of the algorithm in Fig. 1, all other sets of constraints it will be shown in Sec. 4 that the algorithm
that is required is to impose constraints in each domain that are converges, that is, the error decreases at each successive iteration.
pertinent to the problem of interest At the kth iteration, gk(x), an The algorithm depicted in Fig. I may be referred to as the "error-
estimate of f(x), is Fourier transformed, yielding Gk(U), which is reduction" algorithm for that reason, as well as to distinguish it
given by Eq. (3). Then a new Fourier-domain function Gj(u) is from algorithms described in Sec. 4 that are related to it but con-
formed from Gk(u) by making the smallest possible changes in verge faster. Typically, the error is reduced very rapidly for the first
Gk(U) that allow it to satisfy the Fourier-domain constraints. For few iterations of the error-reduction algorithm, but more slowly for
example, if the Fourier-domain constraint is that the Fourier later iterations. For some applications, the error-reduction
modulus equals F(u) over some region of the Fourier domain, algorithm has been very successful in finding solutions using a . --

then F(u) is substituted for Gk(u) in that region. The new reasonable number of iterations. However, for some other applica- . " .
Fourier-domain function Gk(u), which satisfies the Fourier-domain tions, the mean-squared error decreases extremely slowly with each
constraints, is inverse Fourier transformed to yield gj(x). To com- iteration, and an impractically large number of iterations is re-
plete one iteration, a new estimate gk + I(x) is formed from gli(x) by quired. The improved algorithms described in Sec. 4 do much to 0
making the smallest possible changes in gi(x) that allow it to satisfy alleviate this problem.
the function-domain constraints. One example is that if the func-
tion is complex valued and it is constrained to have a modulus 2.3. Alternative descriptions of the algorithm
equal to f(x) over some region of space, then 1 f(x) is substituted Once a solution (i.e., a Fourier transform pair satisfying all the
for gi(x) in that region. A special case of this is when the func- constraints in both domains) is found, the error-reduction
tion is to be zero outside a certain interval (the Fourier function is algorithm ceases to make changes to the estimate, and the
bandlimited). Another example is that if the function is constrained algorithm locks on to the solution. The operations of enforcing the S
to be nonnegative, then gk , 1(x) is set equal to gi(x) for those x constraints in each domain would then leave the function estimate
where g1k(x) - 0, and gk , I(x) is set equal to zero for those x where and its Fourier transform unaltered, since they already satisfy the
g,'(x) < 0. In summary, one transforms back and forth between the constraints. Now let us define the operation Slg(N)] as the suc-
two domains, forcing the function to satisfy the constraints in each cessive Fourier transformation of g(x), followed by the imposition
domain. of the Fourier domain constraints, followed by inverse Fourier

For reconstruction problems, whatever characteristics of the ac- transformation, followed by imposition of the object domain con-
tual Fu) and f(x) that are measured or are known a priori are im- straints. That is, the operation S is just the performance of one S
posed on Gk(u) and g1i(x), respectively. For synthesis problems, iteration of the error-reduction algorithm, and
one imposes on Gk(U) and gi(x) whatever characteristics one might
desire F(u) and fQx), respectively, to have. Once the constraints are gk t x) Slgk(x)] (9)
defined, the algorithm proceeds the same for synthesis problems as
for reconstruction problems. In fact, there are some synthesis prob-
lems that are mathematically indistinguishable from some From the discussion above, it is evident that any solution f() must
reconstruction problems, and they are handled identically by the satisfy the relation •
algorithm.

The first iteration of the algorithm can be started in a number of ()

ways, for example, by setting g,(x) or 6 1(x) equal to an array of f-)-- .)

random numbers. The iterations continue until a Fourier transform When presented in this form, it is seen that the error-reduction
pair is found that satisfies all the constraints in both domains to algorithm is a particular implementation of the method of suc-
within the desired accuracy (or, if convergence is too slow, until cessive approximations. if)
one loses interest or the money runs out). The mean-squared error The method of successive approximations can be more easily •
can generally be defined in the Fourier domain by understood from the following simple example. Suppose one

wishes to solve the follow ing equation for y:

Gk(u)-Gk(u) 2du 4y -4t + 1 0. (I'"

K .. . . . (7 )
Based on the relation , y + 1 14, one could write

2 ~du -J u d t SI(v) I4 . (12)

or in the function domain by Using the method of successe approximations to find the solu- - -.

tion, one tould pick an initial estimate, say Yo - 0.1. and employ-
0c ing Eq. (12) compute Y 0.2501, v, = 0.2539, etc., and rapidly •
fconverge to the solution 0.2541737. However, it con- *

gk• I(xl - g(x 2 d  erges to y only for y0 < V 0.8967902 .... For v, > y .", Eq.
(12) diverges; and for y , it stays at y the second solution.

-8) On the other hand, one could just as logically have chosen

gk x) Yd y I - -( k - 1 4)' (13)

This second form conerges to the second solution v' for v "

In each ot these two e\prcssion, the integrand in the numerator is diverges for < y
, and stays at y for Yo .v. Figure 2, a

the squared modulus ol the amount b,, which the computed fune- graphical representation of i-q. (12), sho\ks the tsso solutions.
tion %iolate, the constraintN in that domain. It is easily seen that and y". The irregular staircase between the tswo cur\es and.-
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are measured (or are given), and one wishes to know the phase of -

the Fourier transform pair in both domains. These include the
phase retrieval problem in electron microscopy, the phase retrieval
problem in wavefront sensing, the design optimization of radar
signals and antenna atrays having desirable properties, and phase
coding and spectrum shaping problems for computer-generated

y' holograms and other applications. These applications often involve
the Fresnel transform for the near-field case instead of the Fourier p

I transform.
--"- For another set of problems, the function is known to be real and

nonnegative and the modulus of its Fourier transform is measured.
These include the phase problems of x-ray crystallography, Fourier
transform spectroscopy, imaging through atmospheric turbulence
using interferometer data, and pupil function determination.

For another set of problems, a low-resolution (i.e., a low-pass
filtered) version of a function is measured (i.e., its complex Fourier
transform is measured only over a certain interval), and the func-
tion is known to have a finite extent (i.e., it is zero outside of some
known region of support). This is the spectral extrapolation or
superresolution problem for band-limited time signals or for im-
aging of objects of finite extent.

For another set of problems, the function is known to be non- -

negative and of finite extent and its complex Fourier transform is S
_ _ _ _ _measured only over a partially filled aperture. These include the in-

Y Y" terpolation of the complex visibility function for long baseline
radio interferometry and the missing-cone problem in x-ray
tomography.

For still another set of problems, the modulus of a complex-
Fig. 2. Method of successive approximations for solving 4y4 - 4y valued function is given, and one wishes to find an associated phase -

+ 1 = 0. function that results in a Fourier transform whose complex values S
fall on a prescribed set of quantized complex values. These include
the reduction of quantization noise in computer-generated --

1/4 indicates how the estimate Yk approaches the two solutions, holograms and in coded signal transmission.

Criteria on the derivative of S(y) determine whether the algorithm Another problem is to reconstruct the modulus of a complex-
converges. valued function from the phase of the function, given the fact that

The error-reduction algorithm, as described by Eqs. (9) and (10), the Fourier transform of the function has finite support.

is analogous to the example of successive approximations described The number of types of problems solvable by the iteratise
above, except that instead of operating on a scalar y, it operates on algorithm appears to be limited only by one's ingenuity in defining

a function g(x). As seen from the example, the method of suc- different combinations of information that might be axailable in

cessive approximations may or may not converge, depending on the each of two domains.
particular form chosen and on the initial estimate. Fortunately, as 3.1. Modulus-modulus constraints
will be discussed further in Sec. 4, the error-reduction algorithm
never diverges. It may, however, stagnate. A simple example of 3.1.1. Electron microscopy
stagnation of the method of successive approximations is shown by Among the applications for which the modulus is given in each ot S
the following. In solving x = 2 - x (which has the obvious solution two domains, the electron microscopy phase retrieval problem sas-
x = I), starting with the initial estimate x0, one obtains x, = 2 - x0, one of the earliest applications of the error-reduction algorithm
x,= 2 - (2 - xo) = xo . .. X2k-I = 2 - x0 , x2k X0 , etc., and no and has been the problem most heavily investigated. 1 4 15 The
progress is made toward the solution, error-reduction (Gerchberg-Saxton) algorithm has been shown to

Another way of understanding the error-reduction algorithm, perform very successfully for this problem, and the solution is
applicable for certain sets of constraints, is the alternating projec- usually unique. 15 The reader is referred to a book by Saxton4 for a
tion of the function onto specified subspaces in a Hilbert space.t 2  thorough review.
This, along with the possibility of closed-form solutions, 13 is
discussed in the contribution to this volume by Marks and Smith. 3.1.2. Spectrum shaping

A second application for which the modulus is given in each of tsko • "
* . APPLICATIONS domains is the spectrum shaping problem. Spectrum shaping is a

A large number of important problems in optics and related fields synthesis problem that can be stated as follows: given the modulus
fit the problem description in Sec. I and can be solved by the f(x) of a complex-valued wavefront, g(x) f(x) explio(x)],
iterative algorithm (by the error-reduction algorithm described in find a phase function 0(x) such that .? [g(x)] is equal to a given p
Sec. 2 and the related algorithms described in Sec. 4). One par- spectrum F(u) . Such a problem is the one suggested by the Esther
ticular application, that of spectral extrapolation or superresolu- engraving shown in Fig. 3, in which a bird transforms into a fish.
tion, is discussed in detail in the contribution to this volume by One wishes to find a function with modulus being a picture of a
Marks and Smith. In this section, several classes of applications are fish, which has a Fourier transform with modulus being a picture of
listed, followed by more detailed discussions of some of the ap- a bird. Or, in terms of computer holography, find a phase function
plications, including examples. to assign to the image of a fish so that the hologram %kill look like

In Sec. I, a distinction was made between reconstruction prob- an image of a bird. Figure 4(a) shows the actual "bird" and "fish"
lems and synthesis problems. Another useful way to classify such binary patterns used for our experiment.- For the first iteration, the
problems is according to the type of information available. For one fish object was random phase coded, Fourier transformed, and the
set of problems, the modulus (magnitude or amplitude) of a modulus of the Fourier transform was replaced with the modulus
complex-valued function and the modulus of its Fourier transform of the bird pattern shown in Fig. 4(a). The result %as irserse

150 / SPIE Vol 373 Transformations in Optical Signal Processing (198 1) !.



:=a)

Fig. 3. Bird transforms into fish ("Sky and Water" by M. C. Escher).
This reproduction was authorized by the M. C. Escher Foundation,
The Hague, Holiand/G.W. Breughel.

Mr

(b)

Fig. 5. Computer-simulated images from kinoform. (a) object ran.
dom phase coded; (b) after eight iterations of the iterative
algorithm.

kinoform, which allows nearly continuous phase control by vary-
ing the thickness of the recording medium, but which quantizes the
modulus to a single level. (If the gray-le% el recording des ice used to
synthesize a kinoform has a finite number of gray leels, then the(b) (C) phase is quantized as %,Nell.) The desired coefficient F is, only ap-

proximated by the quantized value F/ F . Since only the squared
(a) modulus (the intensity) of the image is observed, one is free to

Fig. 4. Example of spectrum shaping. (a) Bird hologram and choose the phase of the object (phase code the object) in such a skay
desired fish image; (b) fish output image alter random phase as to reduce the variance (dynamic range) of F . In this ssav the
coding of input; (c) output image after seven iterations of the quantization noise in kinoforms and, to a lesser extent, in other
iterative algorithm. types of computer-generated holograms can be greatly reduced.

Random phase and sarious deterministic phase codes I cause con-
siderable reduction in the sariance of F , but substantial errors re-

Fourier trsformed, yielding the very noisy output image shown in main. 19

Fig. 4(b). The iterative algorithm was then used for seven itera- It was for the kinoform application that the iterative algorithm
tions. resulting in the improved image shown in Fig. 4(c). For this was first invented.2-- Figure 5 sho ,s an example of its use for this
example, increasing the number of iterations resulted in a further synthesis problem.' Figure 5(a) shosws the image resulting %shen the
improvement of the quality of the image; that is, a Fourier input image was random phase coded, encoded as a kinoform in -

transform pair was found that more closely satisfied the constraints the Fourier plane, and reconstructed by inverse Fourier transfor-
in both domains. mation. The ideal image would be the binary ( 0 or I) block letters

Spectrum shaping is also important in computer holography for SU. Figure 5(b) shows the improved result after eight iterations of
reducing quantiiation noise. The objective of computer the iterative algorithm. In this case, the image-domain constraint is
holography'6 is to synthesize a transparency that can modulate a that the modulus equal the SU pattern, and the Fourier-domain
wavefront according to a calculated wavefront, often correspond- constraint is that the modulus equal a constant.
ing to Fourier coefficients (or samples of the Fourier transform of A problem ser. similar loic kinlofrin problcn ik ihat ot s,.l.

an image) computed by the discrete Fourier transform. Let F thesizing a quasi-random radar signal having good autocorrelation
;0 [fa be the desired wavefront modulation and f be the complex- properties. Specifically. one A ould like to sy nthesie a radar signal
valued function describing the desired image. Due to the limitations f(t) which is a pure phase function, i.e., f(t) - I, ocr some inter-
of the recording devices and materials used to synthesize computer val of time and A hich has an autocorrelation function s hich ap-
holograms, it is often not possible to represent exactly any arbitrary proaches a delta-function, i.e., its Fourier spectrum I-(1,) 2 is con-
complex Fourier coefficient. An extreme example of this is the stant over the bandwidth of interest. From the examples shown
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D above, it is obvious that the iterative method would be an effective
tool for synthesizing such radar signals.

Another spectrum-shaping application is the phasing of elements
'f an array of antennas in order to achieve a far-field pattern has-
ing desirable properties. For example, one might wish to phase the 6
antenna elements in such a way as to minimize the maximum
sidelobe of the far-field pattern or to place nulls of the antenna pat- 5
tern at several different prescribed locations simultaneously. A
related application for which the iterative method has been used is
the transformation of a Gaussian laser beam into a beam having a
more nearly rectangular profile.20

3.1.3. H asefront sensing

The wavefront sensing application is very similar to the electron "
microscopy problem. Suppose that one measures the image f(x) 2
of a point source using an aberrated optical system, where the aber-
rations may be due to atmospheric turbulence or due to the optical
system itself. Assuming that the aberration is a pure phase func-tion, then F(u), the Fourier transform of f(x), has modulus F(u)

equal to the aperture function of the optical system. The problem is
to reconstruct the phase of F(u) given F(u) and f(x) . Several in-

r vestigators9 ,21 .22 have applied the error-reduction algorithm to this
problem with generally good results.

3.2. Nonnegativity-modulus constraints 7
For some reconstruction problems, the physical quantity of interest
can be represented as a nonnegative function, and one is able to
measure only the modulus of its Fourier transform (or at least the
measured modulus information has a much higher signal-to-noise
ratio than the measured phase). From the Fourier modulus, one
wishes to reconstruct the Fourier phase or, equivalently, the func- 3
tion itself. Since the autocorrelation of the function is available as
the inverse Fourier transform of the squared Fourier modulus, 23  2
this problem is equivalent to reconstructing the function from its
autocorrelation. This problem, referred to as the phase retrieval
problem of optical coherence theory, arises in spectroscopy, 24 a
one-dimensional problem; in astronomy, a two-dimensional prob-
lem; and in x-ray crystallography,2 S a three-dimensional problem.
In spectroscopy, the nonnegative spectral density, g(p), is the (b)
Fourier transform of the complex degree of temporal coherence,
A-). of which ^, r) is most easily measured. In x-ray
crystallography, the nonnegative electron density function, Q(x, y, Fig. 6. Functions (a) and (b) having the same Fourier modulus.
z), which is periodic, is the Fourier transform of the structure fac-
tor Fhkt , of which FhkI is measured by a diffractometer. The
astronomy problem will be described in more detail later. translates of the autocorrelation function. 2  --. ''.

In the event that multiple solutions do exist, it would not appear
3.2.1. Uniqueness ol)sohulion.% that the algorithm would be biased toward one over another, and

For the one-dimensional problem, use of the iterative algorithm (or one would expect the algorithm to converge to different solutions,
any other method) to reconstruct the function from its Fourier depending on the initial input to the algorithm. For example, Fig. 6
modulus is of limited interest since the solution in the general case is shows two functions having the same Fourier modulus. In a corn-
usually not unique. 26"2 - The uniqueness of the solution for the one- puter experiment using the iterative reconstruction algorithm on
dimensional problem can be analyzed using the theory of analytic the functions' Fourier modulus, it converged to one of the solu-
functions, from which one finds that additional solutions can be tions in about half of the trials and converged to the other slution
generated by "flipping zeros" of the Fourier transform analytically in the other half of the trials, depending on the random number ,e-
extended over the complex plane. 26 '2' The additional "solutions" quences used as the initial input to the algorithm.
hase the same support as the original function, but aie not For the problem in two or more dimensions, it appears that the
guaranteed to be nonnegative; therefore one could reduce the solution is usually unique. Considering sampled functions defined
degree of ambiguity by generating all possible "solutions" and then on a rectangular grid of points, Bruck and Sodin " shoswed that the
keeping onlN the nonnegati.e ones. 28  existence of additional solutions is equivalent to time factorabilits 0i

For certain special types of one-dimensional functions, there is a a polynomial representation of the Fourier transform. Since a
high probability that the solution is unique. For a function having polynomial of one variable of degree M can alsays be factored into
two separated intervals of support, being separated by an interval M prime factors, there are 2"1- solutions in the one-dirnensional
o.er which the function is /ero, the solution usually is unique,29., case. Once again, only some of the "solutions" na. hc non-
but only if the two inter\,als of support are sufficiently separated."' negative. On the other hand, polynomials of two or morc \ariablc,
Another special type of function for which the solution is usually having arbitrary coefficients are only rarely factorable; coniequent-
unique is one consisting of a summation of a number of delta. ly, the two-dimensional problemn is utitiall\ unique. -\Httenpts has C
functions randomlv distributed in space; for such functions, one also been made to extend this concept to continuous, as opposd to
does not need the iterative method-they can be reconstucted by a discrete, function,.. 4 .,Although it is alwkay, possible to make ip Cs-
simple noniterative method in ols ing the product of three amples in two dimensions that arc iot unique," it appear, it) be
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* true that for two-dimensional functions drawn from the real world,
the solution is usually unique. The general uniqueness of the two-
dimensional case is indicated by experimental reconstruction results
using the iterative algorithm. 36 Furthermore, noise in the Fourier
modulus data has had the effect of adding noise to the
reconstructed function rather than causing the algorithm to con-
verge to a radically different solution. 37

3.2.2. Astronomical reconstruction

The problem of reconstructing a two-dimensional nonnegative
function from the modulus of its Fourier transform arises in

* astronomy. Due to atmospheric turbulence, the resolution at--
tainable from large optical telescopes on earth is only about one
second of arc, many times worse than the diffraction limit imposed
by the diameter of the telescope aperture. For a five-meter
telescope aperture, the diffraction-limited resolution would be
about 0.02 seconds of arc-fifty times finer. Despite atmospheric
turbulence, it is possible to measure the modulus of the Fourier
transform of a space object out to the diffraction limit of the
telescope using interferometric techniques. 38-4 1 The autocorrelation (d) (e)
of the object can be computed from the Fourier modulus, allowing
the diameter of the object to be determined. However, unless the
Fourier transform phase is also measured, it was previously not
possible to determine the object itself, except for some special
cases. Previous attempts to solve this problem had not proven to be
practical for complicated two-dimensional objects. 1

The problem of reconstructing an object from interferometer
data can be solved by the iterative method. 42 .36 The Fourier-
domain constraint is that the Fourier modulus equal the Fourier
modulus measured by an interferometer, and the function-domain
constraint is that the object function be nonnegative. Figure 7 (g)
shows an example. Fig. 7 (a) shows a computer-synthesized object
used for the experiment-a sun-like disk having "solar flares" and Fig. 7. Reconstruction of a nonnegative function Irom its Fourier

bright and dark "sunspots." The modulus of its Fourier transform modulus. (a) Test object; (b) modulus of its Fourier transform: (c) ini.

is shown in Fig. 7(b). Figure 7(c) shows a square of random tial estimate of the object (first test); (d)-(f) reconstruction results
-number of iterations: (d) 20, (e) 230, (f) 600; (g) initial estimate ofnumbers used as the initial input for the iterative algorithm. Figures the object (second test); (h).(i) reconstruction results-number of

7(d), 7(e), and 7(f) show the reconstruction results after 20, 230, iterations: (h) 2, (i) 215.
and 600 iterations, respectively. Figure 7(g) shows the initial input
for a second trial, and the reconstruction results after 2 and 215
iterations are shown in Figs. 7(h) and 7(i), respectively. Comparing
Figs. 7(f) and 7(i) with the original object in Fig. 7(a), one sees that known finite extent (or support) and one wsishes to reconstruct the
for both trials, the reconstructed images match the original object function with resolution appropriate to an aperture in the Fourier
very closely. Note that inverted solutions such as Fig. 7(f) are per- domain more complete than the one over which measurements were
mitted for this problem since the modulus of the Fourier transform actually taken. In some cases, the desired aperture is simpl. larger

of f(-x) equals the modulus of the Fourier transform of fQx) for than the aperture over w hich measurements were taken, and so one
real-valued f(x). Other successful reconstruction experiments have wishes to extrapolate the function's Fourier transform, i.e., to ob-
been performed on data simulated to have the types of noise pres- tain superresolution of the function. In other cases, one has made
ent in stellar speckle interferometry,39 and it appears that under measurements over a partially filled aperture, in which casc one
realistic levels of photon noise for fairly bright objects, diffraction- wishes to interpolate the Fourier transform of the function, and
limited images can be reconstructed. 37 Initial expements have also thereby obtain an improsed impulse response in the function do-
been carried out on data from telescopes. 43  main.

3.2.3. Pupil reconstruction and synthesis 3.3. 1. Extrapolation or superresolution

Another case in which one may want to reconstruct a two- The error-reduction algorithm was first applied to the extrapolation
dimensional nonnegative function from its Fourier modulus is in (or superresolution) problem by Gerchberg. "5 Much has been "rit-
pupil function determination. In a diffraction-limited optical ten about the iterative algorithm, specifically the error-reduction
system, the point-spread function is the squared Fourier modulus algorithm, as it relates to this problem, including various "ass of
of the system's pupil function. Equivalently, the optical transfer understanding the algorithm (see the end of Sec. 2) and proofs of
function is the autocorrelation of the pupil function.U Given the conergence. 10.12.11 .46-48 For this particular problem, the nature of
pointspread function at a given location in an image plane, one the constraints makes it possible to implement the algorithm by a
could use the iterative algorithm to retrieve the corresponding pupil feedback optical processor 49 -0 taking on the order of 10 ' seconds
function, in a way that is mathematically equivalent to the per iteration even for the ti o-dimensional case. Marks and Smith
astronomy problem. Turning this problem around, one could use describe these matters in detail elseshere in thi %olume.
!he iteratie algorithm to synthesize (design) a pupil function that
would yield a gien, desired point-sprad function wshile possibly 3.3.2. Interpolation

satisfying other desirable constraints as well. In tomographic imaging systems, many projections of the object
are measured, each prolection \ielding information about a sltce

3.3. Finite extent -measurement over part of an aperture through the Fourier transform of the object. When mcasurements
In a number of reconstructton problems, there ,,t a function of oer only a limited cone ot angles are made, the eflecti.c aperture
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in the Fourier domain has gaps, and the impulse response of the
system is highly irregular. In applying the iterative algorithm to this
problem.51.52 the function-domain constraint is the finite extent
and nonnegativity of the object, and the Fourier domain constraint
is that the Fourier transform equal the measured Fourier transform
over the measurement aperture.

A problem similar to the tomography problem arises in radio
astronomy. The radio sky brightness map is a two-dimensional
real, nonnegative function which is the Fourier transform of the
complex visibility function. The visibility function is measured by
radio interferometr,, and in the case of long-baseline in-
terferometry, the % isibility function is measured only over a limited
set of "tracks" in the Fourier domain, resulting in a partially-filled
effectise aperture. The error-reduction algorithm has been used to
obtain improsed maps by, in effect, interpolating the visibility
function to fill in the area between the tracks." For this problem,
the constraints on the brightness map are that it be nonnegative and
be zero outside the known field of view. In the visibility plane, the (a)
constraint is that the complex visiblity function equal the measured
, alue within the area of the tracks.

3.4. Modulus-quantized values
.As mentioned earlier in connection with spectrum shaping, in com-
puter holography one may wish to encode the Fourier transform of

an image as a computer-generated hologram, but some types of
computer-generated holograms can encode only certain quantized
complex values. The kinoform example discussed earlier is a special

type of quantization. A more general example is the Lohmann
hologram, for which the modulus and phase of a complex sample
are determined by the area and relative position, respectively, of an
aperture s ithin a sampling cell. The number of allowable quantized
%allies is determined by the number of resolution elements, of the
recording desice used to fabricate the hologram, used to form one
cell. For this synthesis problem, the function-domain constraint is
that the modulus of the function equal the desired image modulus (b.
and the Fourier-domain constraint is that the complex Fourier _--_
coefficients fall oil a prescribed set of quantized values. Ex- Fig. 8. Computer-simulated images from hologram with four
periments have shosn that synthesizing such a Fourier transform magnitude and four phase quantized levels. (a) Object random
pair is possible using the iterative algorithm.5 5 ' ' For example, Fig. phased coded; (b) after 13 iterations of the iterative method.

8(a) shows, a simulation of an image produced by a Lohmann
hoi.Lianl hasinv ol,, lfou, ,iodulis and four phase quantization.
levels %%hen the image sas random phase J Jed. Figure 8(b) shows puled function (or the conmputed I-ourier Ifristorl) s.olatc, liC"
the image after 13 iterations, a considerable improvement. This constraints in the appropriate domaiti. \\hcn the mean-,,quaelCd Cr
problem is one of a more general class of problems regarding the ror is zero, then a -ourier transform pair has becn found Ohat
transmis,,ion of coded data. satisfies all the constraints in both dlomain. s.

Consider again the steps in tie error-reduction algorithm
3.5. Finite extent-phase described in Sec. 2. The kth iteration startss %ith an es lltlc gkt\1
Finall., the iteratise algorithm has been used to reconstruct the that satisfies the function-domiain cotvsraint. [or an. coordinate,

modulus, of a hand-limited signal from its phase.5( '-'6 Or, looking at x, the complex values that gx can ha\e that alisf\ the function-
it in another s\av, gisen that a function has finite extent and given domain constraints form some set tt pointit phasor spac. I or
the phase of its Fourier transform, reconstruct the modulus of its example, if the modulus Mustl qual I (\) . theti the set of -uch
Fourier transform. For this application, it has been shown that for points is a circle of radiu,, t(x) ill phasor ,pace. it the lniict ion

a s ide las of condition, the solution is unique.' This application must be nonnegatise, then the set of such poitts is the halt line oti
L ill be discussed further in Sec. 4. the nonnegative real axis. The function estimate gx) i, IFourict

transformed, yielding (k(tl). Tlme next step in the algortitnl i, to
form (.'i(u) by changing (k(1) by lite smallest possible amouti I tat
alloss it to satisfy the Fourier-domain constraints. ('01i) is then in-

ACCELERATED ALGORITHMS serse Fourier transformed, yielding g'(\) in the function domain.

-, nentioned in Sec. 2, the basic iterative algorithm depicted in In the final step, gk • x is formed by changing gk(m b tite
Img. I, referred to as the error-reduiction algorithm, has been sho% n smallest amoutt that alloss it to satist\ the luntion-doawit c,.oi1-

to conserge for sor0e applications. In this section, the constergence ,,traint,,. No\% consider the u i rnialized squarcd error, gisci b%
is pro\en for all applications. In addition, modified algorithms that the numerators in I-qs. (7) arid (8). In the t-.orier domain, the un-
often conserge much faster than the error-redutioti algorithm are normalized squarcd error at the kt iteration is
discus ed

4.1. ( ,insergence of the error-reduction algorithm el J (I.t) I (ti t dI

I or tie error-redilction algorithm, the mean-squared error cal he
delned in general h, Iq. (7) or Eq. (8). It is a normalized sersion
of tihe irte,,ral o er the square of the amount by %%hich the com- 7
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SJ I gk(x)- g(x)I dx,

where the second line in this equation results from Parseval's IN U
theorem. The unnormalized squared error in the function domain
at the kth iteration is given by

eOk- !gk+(x)-gl (x)I~dx. (15)

-Oo

Both gk(x) and gk + 1(x) by definition satisfy the function-domain S
constraints. Also at any given coordinate x, gk + 1(x) is the point in SATISFY
phasor space satisfying the function-domain constraints that is FOURIER
closest to gi(x). Therefore, for all values of x, CONSTRAINTS

gk +I Wx -g X ) ! < gk(x)-gl(x l
1 , (16)

where equality holds only if gk(x) is just as close in phasor space to
gk(x) as gk + I(x) is. When there is a point in phasor space satisfying
the constraints that is closer to gli(x) than gk(x) is, then the left- OUTPUT g 11
hand side of the expression above is strictly less than the right-hand
side. Therefore, combining Eqs. (14)-(16),

,< ek (17)
Fig. 9. Block diagram of the system for the input-output concept.

for a given iteration. From the perfect symmetry of the error-
reduction algorithm, as seen from Fig. 1, a similar result holds
when one completes the iteration by satisfying the function-domain algorithm, the input is not necessarily an estimate of the function
constraints, thereby forming gk + 1(x), and continues the next itera- or a modification of the output, nor does it have to satisfy the con-
tion by Fourier transforming gk + I(x) and causing its transform to straints; instead, it is viewed as the driving function for the next
satisfy the Fourier-domain constraints. One then finds that output. This viewpoint allows one a great deal of flexibility and in-

ventiveness in selecting the next input and allows the invention of
an algorithm that converges more rapidly to a solution. As will be

efk s e- k • (18) seen later, the "input-output algorithm" actually comprises a few
different algorithms, all of which are based on the input-output

Therefore, the unnormalized squared error can only decrease (or at point-of-view.
least not increase) at each iteration. Since the normalized mean- How the input should be changed in order to drive the output to
squared error is simply proportional to the unnormalized squared er- satisfy the constraints depends on the particular problem at hand.

ror, a similar result holds for the errors defined by Eqs. (7) and (8). The analysis given in the appendix for a specific application can be
While the error-reduction algorithm converges to a solution suf- generalized as follows. Consider what happens when an arbitrary .

ficiently fast for some applications, it is unbearably slow for others. change is made in the input. Suppose that at the kth iteration the in-
In most cases, the error is reduced rapidly for the first few itera- put gk(x) results in the output gi(x). Further, suppose that the input
tions, and then much more slowly for later iterations, is then changed by adding Ag(x):

4.2. Input-output algorithms gk 1 (x) = gk(x) + Ag(x). (19)

Resulting from an investigation into the problem of the slow con-
vergence of the error-reduction algorithm, a new and faster- Then one would expect the new output resulting from gk PIx) to
converging algorithm was developed, the input-output be of the form
algorithm.-55". 7 .16,4 2 The input-output algorithm differs from the
error-reduction algorithm only in the function-domain operation.
The first three operations-Fourier transforming g(x), satisfying gi + t(x) = gi(x) + ca/g(x) + additional noise. (20)

Fourier domain constraints, and inverse Fourier transforming the
result-are the same for both algorithms. Those three operations,
if grouped together as shown in Fig. 9, can be considered as a That is, the expected (or statistical mean) value of the change of the
nonlinear system with an input g(x) and an output g'(x). A prop- output, due to the change l1g(x) of the input, is alg(x), a constant
erty of this system is that its output is always a function having a times the change of the input. The system shown in Fig. 9 is not
Fourier transform that satisfies the Fourier-domain constraints, linear; nevertheless, small changes of the input tend to result in
Therefore, if the output also satisfies the function-domain con- similar changes of the output. The expected value of the change of
straints, then all the constraints are satisfied and it is a solution to the output can be predicted, but its actual value cannot be

the problem. It is then necessary to determine how to manipulate predicted since it has a non-zero variance. In the equation above,
the input in such a way as to force the output to satisfy the this lack of predictability is indicated by the "additional noise"
tunction-domain constraints, term. The constant a depends on the statistics of Gk(u) and F(u)

For the error-reduction algorithm, the next input g(x) is chosen and on the Fourier-domain constraints.
to be the current best estimate of the function satisfying the If the output gtx) does not satisfy the function-domain con-

function-domain constraints. However, for the input-output straints and if g (x) 4 Agd,(x) does, then one might try to drive the
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output to satisfy the constraints by changing the input in such a In addition to the values of Agd(x) given above, there are other
way as to cause the output to change by Agd(x). Accordin. " the choices that are successful when used in Eqs. (22) and (23). Any
equation above, the change of the input that will, on the average, Agd(x) that moves g'(x) in the general direction of satisfying the
cause a change Agd(x) of the output is function-domain constraints will usually result in an algorithm that

works; suboptimum choices of Agd(x) and of 1 in Eq. (22) or Eq.

Ag(x) = a-tAgd(x). (21) (23) result in algorithms that conver ,e less rapidly than the op-
timum, Two examples of other algorithms that converge more
rapidly than the "logical" ones described in the preceding

Thus a logical choice for the new input is paragraph are as follows. For applications requiring the function to
have modulus equal to f(x) , it was noticed that the difference in

gk I Wx gk(x) + 1g(x). (22) phase between gj(x) and gk(x) tends to have the same sign as the
change of phase of gw(x) from one iteration to the next. In order to
anticipate the direction that the r.hase ;s changing, one could

where 0 is a constant ideally equal to a-t, and where 1g(x) is a choose a 1gd(x) that tends to rotaf he phase angle of the new
function such that gj(x) + Agd(x) satisfies the function-domain input toward that of the last output. That is, a good choice for the
constraints. If a is unknown, then a value of 3 only approximately desired change of the output is 0
equal to cc i will usually work nearly as well. The use of too small a
value of 13 in Eq. (22) will only cause the algorithm to converge F g (x)
more slowly. The noise-like terms in Eq. (20) are kept to a g(x) = f(x) -g(X)

minimum by minimizing IfAgd(x) 1. [ Ig(x)

As mentioned earlier, for the input-output algorithm gk(x) is not
necessarily an estimate of the function; it is instead the driving
function for the next output. Therefore, it does not matter whether [ g( fx) gk(x) (25
its Fourier transform, Gk(u), satisfies the Fourier-domain con- + f(x) -f x)I (25)
straints. Consequently, for the input-output algorithm, the mean- gj(x) -k___
squared error, E2, is unimportant; E2 is the meaningful quality
criterion. When computing E0 for the input-output algorithm, the in which the first component boosts (or shrinks) the magnitude of
gk + 1(x) that one should use in the integrand of Eq. (8) is the one the output to match f(x) and the second component rotates the
determined by the error-reduction algorithm rather than the one phase angle of the input toward the phase angle of the output. For
computed by the input-output algorithm. That is, E0 should still be the astronomy problem, it was found that a particularly successful
a measure of the amount by which the output, gl(x), violates the algorithm was to use Eq. (23) at those points where the constraints
constraints. were satisfied and use Eq. (22) at those points where the constraints

Another interesting property of the system shown in Fig. 9 is that were violated, i.e.,
if an output g'(x) is used as an input, then s.t output will be itself.
Since the Fourier transform of g'(x) already satisfies the Fourier-
domain constraints, g'(x) is unaffectcd as it goes through the g (x), where constraints satisfied
system. Therefore, no matter what inl ut actually resulted in the 9k + I(x) (26)
output g'(x), the output g'(x) can always be considered to have
resulted from itself as an input. From this point of view, another gk(x) - 0g(x), where constraints violated

logical choice for the new input is
Furthermore, it was found that even faster convergence can be ob-
tained by alternating between the above equation and the error-

+ 1(x) = g((x) + 13gd(X) (23) reduction algorithm every few iterations.
Unlike the error-reduction algorithm, the input-output algorithm

Note that if j3 = I in Eq. (23), then this version of the input- is not guaranteed to converge; in fact the error may even increase
output algorithm reduces to the error-reduction algorithm. Since for some of the iterations. However, the input-output algorithm is
the optimum value of j3 is usually not unity, the error-reduction much less prone to stagnation and therefore in practice converges
algorithm can be looked on as a suboptimal subset of one version much faster than the error-reduction algorithm. In some instances
of the more general input-output algorithm. Depending on the during the input-output iterations, E. may even increase although
problem being solved, other variations in Eqs. (22) and (23) may be the visual appearance of the image improves. This behavior, which
successful ways for choosing the next input, is poorly understood, is described further in Ref. 59.

In order to implement the input-output algorithm using Eq. (22) From the paragraphs above, it is seen that the "input-output
or (23), one chooses Agd(x) according to the function-domain con- algorithm" is really a family of algorithms. The input-output ap-
straints. In general, a logical choice is the smallest value of Agd(x) proach is one that can lead to a number of different algorithms
for which g'(x) + Ag (x) satisfies the function-domain constraints, based on the manner in which the nonlinear system of Fig. 9
At those values of x for which gj(x) already satisfies the function- behaves. One would hope that the principles of control theory and
domain constraints, one would set Agd(x) = 0. At those values of x possibly other disciplines could be used to shed further light on thi-
for which gl(x) violates the function-domain constraints, examples system and help to arrive at algorithms with still more rapid con-
of logical choices of Agd(x) for various applications are as follows. vergence.
For the astronomy problem and other applications requiring the It should also be noted that, unlike the error-reduction 0
function to be nonnegative, choose Agd(x) = -gj(x) where gj (x) is algorithm, the input-output algorithm does not treat the two do-
negative. For applications requiring the function to be of finite ex- mains in a symmetric manner. By reversing the roles of the tw.o
tent, choose Agd(x) = -gj(x) for x outside the known region of domains, one can arrive at a different and possibly more advan-
support. For applications requiring the function to have modulus tageous algorithm.
equal to f(x) ,choose

4.3. Relaxation-parameter algorithm
gl(x) A second method of improved convergence is the use of a relaxa- 0

Agd(x) fx) gl(x). (24) tion parameter. In solving the problem of reconstructing the
gi (x) '  magnitude of a band-limited function from its phase (or,

equivalently, reconstructing a tunction of finite extent from the
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The computation of the relaxation parameter by Eq. (29) takes
Gmuch less time than the computation of one (fast) Fourier
G- Ctransform, and so it does not significantly increase the total com-

putation time of a single iteration.
Use of the relaxation step for the problem of reconstructing a

band-limited function from its phase resulted in an order of
magnitude improvement in the speed of convergence of the

SATISFY SATISFY algorithm over that of the error-reduction algorithm. 5

FUNCTION FOURIER The relaxation step described above incorporates the optimum
CONSTRAINTS CONSTRAINTS combination of the current output with the previous output. It is

4 ,, also possible to extend this concept to include a number of previous
outputs, ' which may result in still more rapid convergence.

It should be noted that the majority of the work referenced in

R L Sec. 3 made use of only the error-reduction algorithm. Improved

R STEP .g - G speed of convergence could be expected if one of the two ac-
celerated algorithms discussed above were employed.

Fig. 10. Block diagram of the error-reduction algorithm modified to 5. SUMMARY AND COMMENTS
include a relaxation step. The iterative error-reduction algorithm, an extension of the

Gerchberg-Saxton algorithm to include various types of con-

phase of its Fourier transform), Oppenheim, Hayes, and Lim 57  straints, has been found to be capable of solving a wide range of
phsmodifd ithe Froruction aorm (Fi. I ye adin a i rdifficult problems in optics and other fields. It can be applied to themodified the error-reduction algorithm (Fig. 1) by adding a relaxa- reosutinoafntonanbjtwvrnsgalet.

tion step, as shown in Fig. 10. Here the band-limited function is reconstruction of a function (an object, wavefront, signal, etc.)

taken to be in the Fourier domain. The function g(x) then must be when only partial information is available in each of two domains,
of finite extent according to the bandwidth of the Fourier-domain or to the synthesis of a function (wavefront, signal, etc.) havingfunction. In the relaxation step, g(X) is formed from g(x) accord- desired properties in each of two domains. The iterative algorithming to is reasonably fast for most applications, since the major computa-tional burden, two Fourier transforms per iteration, can be ac-

complished using the fast Fourier transform (FFT) algorithm. The
g(x) = 01- rk)gl.l(X) + %4kgW(X), (27) iterative algorithm has been shown to outperform alternative

methods of solving these classes of problems both because of its

and then the new estimate gk + 1(x) is formed from gk(x) by making speed and its tolerance of noise. 4-9 For some applications, a large

it satisfy the function-domain constraints. The parameter 17k, which number of iterations is required for convergence of the error-
is a constant that may vary from one iteration to the next, is the reduction algorithm. This situation can be remedied by using an
relaxation parameter. For 17k = 1, gf (X) = gi(x) and this reduces to algorithm with accelerated convergence, such as the input-output
the error-reduction approach. For Ylk = 0, g (x) = g _,(x), that is, algorithm or an algorithm employing a relaxation step.
the result from the previous iteration is used. Other values of ik The iterative algorithm has been in use for only a few years, yet it
give a linear combination of gl(x) and gf (x). For the reconstruck has already found numerous applications; and methods of improv-
tion of a function of finite extent from the phase of its Fourier ing the algorithm have been devised. Nevertheless, it is safe to
transform or from a segment of its Fourier transform (i.e., the predict that it will be used in the future to solve new problems not

superresolution problem), if gi(x) and gi(x) both satisfy the discussed here, and it is hoped that further improvements of the
Fourier-domain constraint, then the linear combination 7gi(x) + algorithm will be discovered.
(I - il)g.(x) also satisfies the constraint in the Fourier domain. It
follows from this that gl(x) given by Eq. (27) also satisfies the POSTSCRIPT
Fourier-domain constraint. In those cases, it can be shown that the

algorithm converges for 0 < 1lk _< 1. However, for other sets of As this book goes to print, further developments relating to the
constraints, for example, given tl" modulus of the Fourier trans- iterative algorithm are occurring at a rapid pace. It has been un-
form, gi (x) given by the equation above does not generally satisfy covered that an algorithm equivalent to Gerchberg's " error-
the Fourier-domain constraints and so the relaxation method does reduction algorithm for extrapolation was proposed by Ville" in
not strictly apply. 1956, although approached from a different point of %iesy. Rela-

The optimum value of 1k can be determined as follows. Define tionships between the error-reduction algorithm and gradient
the function-domain squared error after the relaxation step as search methods have been discovered59' 61 

.
6
: and uncovered.6 1 And

further work on various applications is being reported.M. -"

e2 / gl(x) 2 dx (28) APPENDIX: ANALYSIS OF THE INPUT-OUTPUT
-. SYSTEM
r Consider the synthesis problem for kinoforms, for hich the

where the region of integration, -y, is the region over which the Fourier modulus is set equal to a constant. Suppose that the input
function is known to be zero. Setting equal to zero the derivative of g(x) to a kinoform svstcm results in the output g'(x). The kinoform
e with respect to ?tk, and solving for 7lk, one finds the optimum has a transmittance G'(u) = K exp~io(u)l, where o(u) is the phase

value of 1k to be given by of G(u) - G(u) explio(u) = ,; [g(x)], and K is a constant. The
resulting image is g'(x) 10 'I t(l. Now consider "hat happens

-Re gl.x)[gl(x) - gl _l(xfl" dx when a change Ag(x) is made in the input. As illustrated in the
phasor diagrams in Fig. Al, the change Ag(x) of the input causes a
change A((u) of its Fourier transform, which causes a change

lk . . ... (29) -1G'(u) of the kinoform and a corresponding change Ag(s)
,F 1[AG'(u)J of the output image. The goal here is to determine

gi(x) - gi.,(.N) 2 dx the relationship between the change Ag'(x) of the output and the
change Ag(x) of the input. I-igure A2 sho\s% the relationship be-
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In order to compute the expected change of the output,
E[Ag'(x)], treat the phase angles 0(u) and the magnitudes I G(u) as
random variables. Inserting JAG(u) I from Eq. (A4) into Eq. (All),
one obtains

I AGt(u) 1G(u) e-i4(u) + (u) sin 0(u) ei tI(u) eiTr/ 2

GG

AG(u)[sin 2 0(u) + i sin 0(u) cos 0(u)] . (A)

g' g' C G' dG

. .For 0(u) uniformly distributed over [0, 2r],19 the expected value of
AGt(u) is

Fig. Al. A change ag of the Input results In a change aG' ofh E[AGt(u)ofAG(u)( +i.0) =2AG(u). (A6)
klnoform and a change of Ag, of the output.

Therefore, the expected value of the change of the output is, using
Eqs. (Al) and (A6) and assuming that the magnitudes I G(u) are

IMn identically distributed random variables19 independent of 0(u),

E[Ag'(x)] = E [9 (AG')

,"[E(AG')] = , E(AG t ) E K

AG Gu)EK )IA~ K (7

That is, the expected change of the output is a times the change of
the input, giving us the second term in Eq. (20), where a =
(l/2)E(K/ G ). After a few iterations, G(u) will not differ
greatly from K; then c = 1/2.

Similarly, the variance of the change of the output can be shownFig. A2. Relationship between AG', the change of the kinoform, to be58
and two components of AG, the Fourier transform of the change of
the Input.

E[ Ag'(x) 21 - E[Ag'(x)l2

tween AG'(u) and two orthogonal components of AG(u). By
similar triangles, for AG' < < :G , K) K

K= 2E (E lg(x) dx',

AG'(u) = AGt(u)- , (A) -0A
G(u) -Ag)

where the two orthogonal components of AG(u) are where A is the area of the image. That is, the variance of the change
of the output Ag'(x) at any given x is proportional to the integrated

AGr(u) = AG(u) cos 0(u) eio(u) (A2) squared change of the entire input. The predictability of Ag (x),
and the degree of control with which one can manipulate it,
decreases as one makes larger changes of the input. The difference

parallel to G(u), and between the actual change of the output and the expected change of
the output given by Eq. (A7) is what is meant by the additional

AGt(u) = AG(u) sin 3(u) eilo(u) + w/21 (A3) noise term in Eq. (20). If, after a few iterations, G(u) - K, then
in Eq. (A8) the factor (I/4)2E(K2/ G 2) - [E(K, G )]j = 1: 4.

orthogonal to G(u); and Equations (A7) and (A8) are a justification for the input-output
concept: small changes of the input result in similar changes of the
output, and so the output can be driven to satisfy the constraints by

AG(u) AGr(u) + AGt(u) = AG(u) eilo(u) + (u)l, (A4) appropriate changes of the input, a, in Eqs. (22) and (23),

where 3(u) is the angle between AG(u) and G(u). Only one of the A(KNOWILEI)GMENT
two orthogonal components of AG(u), namely AGt(u), contributes The author gratefully ackno% lcdgcs the support ot lie L'.S. Air
to AG'(u). Force Office of Scientific Research.
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Reconstruction of objects having latent reference points
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A simple recursive algorithm is proposed for reconstructing certain classes of two-dimensional objects from their
autocorrelation functions (or equivalently from the modulus of their Fourier transforms-the phase-retrieval prob-
lem). The solution is shown to be unique in some cases. The objects contain reference points not satisfying the
holography condition but satisfying weaker conditions. Included are objects described by Fiddy et al. 1Opt. Lett.
8, 96 (1983)] satisfying Eisenstein's thorem.

INTRODUCTION ing), nonnegativity and limited spatial extent6 8 (in astrono-

In a number of disciplines, including astronomy, x-ray crys- my), atomic models 9 (in x-ray crystallography), and objects
tallography, electron microscopy, and wave-front sensing, one consisting of collections of points having nonredundant
encounters the phase-retrieval problem. One wishes to spacings.)

Here it is pertinent to review the case of holography.
reconstruct f(m, n), an object function, from IF(p, q)I, the Supposethatf(m,n)consistsofanobjectofinterest,g(m,n),
modulus of its Fourier transform, where Spoeta m )cnit fa beto neet m

plus an unresolved (delta-function-like) point, referred to as

F(p, q) = IF(p, q)lexpli#(p, q)] = 5f(m, n)] the reference point, i.e.,

M-i N-t f(m,n) = A6(m -mo, n -no) + g(mn), (4)
= Y _i f(m, n)exp[-i2r(mp/M + nq/N)I, (1)

m=
0 

n=o where b(m, n) is a two-dimensional (2-D) Kronecker delta

where m, p = 0,1 .. M - 1 and n, q = 0, 1 .. N - 1. The function. Then the autocorrelation can be written as the sum

discrete transform is employed here since in practice one deals of four terms,

with sampled data in a computer. The problem of recon- rf(m, n) = IAI 26(M, n) + r,(m, n) + Ag*(mo- m, no- n)
structing the object from its Fourier modulus is equivalent to

+ A*g(m + too, n + no), (5)
reconstructing the Fourier phase, l(p, q), from the Fourier

modulus; since once one has the phase as well as the modulus, the final term of which is the cross-correlation of the reference
one can easily compute f(m, n) by the inverse (discrete) point with the object of interest and is simply proportional to

Fourier transform. rf(m, n), the (aperiodic) autocorrelation a translate of the object of interest. If the distance from the
of f(m, n), is given by' reference point to the object of interest exceeds the diameter

l-I N-I of the object of interest, then the fourth term in Eq. (5) is
ri(m, n) = Y f (J, k)f*(j - m, k - n) (2) nonoverlapping with the other terms, and the object of interest

J=O k=0 is reconstructed by simple inspection of the autocorrelation.

-1 . IF(p, q)111, (3) Then the holography condition is satisfied. 2 If the ampli-
tude and position of the reference point are unknown (except

where the asterisk denotes complex conjugate. Note that the that the reference point satisfies the holography condition).
autocorrelation is Hermitian: rf(-m, -n) = rf*(m, n). Note then the object can be reconstructed only to within a complex
also that in order to avoid aliasing during the computation of factor A* and to within a translation, and there would be a
I F(p, q) 12, it is necessary to have f(m, n) = 0 for M/2 < rn twofold ambiguity as to whether the object is given by the
M - 1 and for N/2 <_ n < N - 1; this will be assumed fourth term or the third term (the conjugate image) of Eq.

throughout this paper. Then there is no difference between (5).
the periodic (cyclic) and aperiodic autocorrelation. (For x-ray In this paper we describe an algorithm for reconstructing

crystallography this is usually not the case, and the results of certain objects having reference points that do not sat isfy the
this paper do not apply.) Since the autocorrelation function holography condition. For these cases the reference points
is easily computed from the Fourier modulus by Eq. (3), the may be referred to as latent reference points, because they do
phase-retrieval problem is equivalent to reconstructing an not immediately yield the object as would a holographic ref-
object from its autocorrelation function, erence point; rather, a degree of development is required be-

Several phase-retrieval algorithms have been proposed, all fore their usefulness emerges.

of them requiring some additional measurements or con- In Section 2 the question of the uniqueness of the solut ion
straints on the solution. Examples include a reference point is reviewed. In Section 3 the new reconstruction algorithm

at least one object diameter from the object 2 (giving rise to the is described as it is applied to three different classes of objects.
holography condition:'), a second intensity measurement in Additional comments on the reconstruction algorithm are

another plane 4 .5 (in electron microscopy or wave-front sens- included in Section 4.
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2. UNIQUENESS OF THE SOLUTION contains five columns and four rows of points. The object
must also he nonzero b)oth at point A and at point B in theWhen one measures only the Fourier modulus, then the lower left corner of the rectangle. Points A and B are referred

uniqueness of the solution is a central question. Oneofcourse toas the reference points, and they do not satisfy the holog-

always has the twofold (180' rotated or conjugate image) raphy condition. If these conditions are satisfied, then the

ambiguitysince .7 (m, n(m = th u ti *(-m, -n )1 ; and trans- Fourier transform of the object satisfies Eisenstein's theorem.
lationsmaking it an irreducible 2-D polynomial and guaranteeing
stant phase factor exp(i) (where 1 is a real constant) also have mak t an rdcbe phs poyoial and gune
noff r y ithat the solution to the phase retrieval problem is unique.They demonstrated the power of these conditions by recon-
we consider the solution of the phase-retrieval problem to be struction experiments using the input-output iterative Fou-
unique. rier-transform algorithm." - First. they performed a recon-

Bruck and SodinII considered objects consisting of a rec- struction experiment on the Fourier modulus ofa particular
tangular grid of delta functions having various complex am- object that did not have a reference point A. After 25) iter-

plitudes (or equivalently, a 2-D sequence), which have Fourier ations, a poor reconstruction ersulted. But when a new objet

transforms that can be expressed as polynomials. These are

the types of objects assumed by Eqs. (1) and (2). and we refer was formed by adding a reference point A off its corner making
it satisfy the conditions, then a good reconstruction was )h

to such objects as sampled objects. They showed that, for tained after only 20 iterations." Note that this does not prove
sampled objects, a lack of uniqueness of the solution to the that the original object (without the point A) was nonunique:
phase-retrieval problem is equivalent to the factorability of the failure of the iterative reconstruction algorithm may only
the polynomial, and therefore one-dimensional (-D) objects bean indication of local minima in the error function. In fact.
oflengtheL havea 2L-s-fold ambiguity This result corre- when the reference point A had a small value, a poor recon
sponds to the analogous theory for 1-D continuous functions. 2  struction was obtained in spite of the fact t hat i rreducibil it
On the other hand, polynomials of two (or more) variables are (and uniqueness) was ensured. Only when a large value (,r
known to be only rarely factorable (i.e., they are usually irre- A was used did the reconstruction become easier 1  Appar
ducible). Consequently, for 2-D sampled objects the solution ently the use of a large enough value for A also ensure.,, that
to the phase-retrieval problem is usually unique. An analo-
gous theory for 2-D continuous functions is not yet avail- there are no local minima.

able.
3. NEW RECONSTRUCTION ALGORITHM

Uniqueness Condition Due to Eisenstein's Theorem For certain classes of sampled objects having reference point>
Although most 2-D sampled objects are, as discussed above, not satsfytg the holograph, condtin. we prn a ne.
uniquely related to the modulus of their Fourier transforms, reconstruction algorithm having a fixed number of steps.
it is of interest to know conditions that ensure uniqueness. This new algorithm is related to the Dallas"' recursive algo-
Such a condition was recently put forward by Fiddy et al. rithm for phase retrieval from two intensity measurements-

They considered the class of sampled objects whose support but requiring only a single intensity measurement (the Fourier
is contained in the union of a rectangle and an isolated point modulus) and solving the equations in a certain order such
(A) below and to the right of the rectangle, as shown in Fig. that the problem of a growing tree of solutins is avoided 

I(a). By way of example. the rectangular region in Fig. 1(a) First the algorithm will e described for the of soluthiet.

described above, and later for a wider class of objects.
K @ K * glm, n) A. Fiddy-Brames-Dainty Objects

n * 0 0 n For mathematical simplicity, consider a sampled object whose

I A e' .B g(J, 1) support is contained in the regions shown in Fig. I b). lts

B , , 0 uniqueness properties are the same as those of the objects 

0 m J A 0 1 J considered in Fig. 1 (a) since the supports are mirror images
(ab) of one another. The object can be expressed as in Eq. 14l with

m= = no = 0:

K- * A* Ag(-,n) f (rn, n = (m, n ) +Ag (iir

-J I, K-I) 0 where g(m, n )is that part off(nr, n ) contained in the rectan-

-J 1(, 1) gular region of support, and A = /4o, 0) - 0. In this case. eiini.
- s zr o t- s- _ is zerooutside 1 : n7 <: J and 1 < n < K: and it is assumed

* .. .* *Ithat ft4. 1) = gtJ. 1) = B ;, 0,and gm. K) ;, 0for at least one
* " U-S0 r8 m, n) value of n. We will refer to objects satisfying these con-
*-" straints as Fiddv-Brames-Dainty (FBI)) objects having FBI)

Ag(-m,-n) * •* * * -K regions of support.
The autocorrelation, r/(m, n), of f(m, n) is given by the four

(c) terms of Eq. (5) with m = n,, = 0. the supports of which are
contained in the sets of points illustrated in Fig. 1(c). From

-Fig. 1. FiddY Itrarne.. H airn v' oibiect (a)i FB-I) o~bject siipport~iv I F y retern Ioint ' .nd 1 oct slt ort asmed; Ict pport this figure. it can be clearly seen that the rightmost column
a i t h ,rrela tl 'i i -p;l rt rht 4et t i un iiItilt-K rectn.tructed tr,,m and the uppermost row of r (m, n ) are simply equal tol A* i n
* it ,ioitot~r lthn ntlotirv n 4:
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r0(J, n) = A*g(J, n), n 1, .... K, 16) point. From Eq. (2), the points of the autocorrelation in

r(m, K) = Ag(m, K), = 1, J. (7 column (J - 1) are given by

Therefore, formfi Jandforn = K, onecanreconstructg(m, r/(J - 1, n) = g(J - 1. n)A* + Y_ g(J,k)g*(I, k - n.,
n) to within a constant factor A* by simple inspection of r/(m, kn+ l

n. In effect, the holography condition is in force for the row (15)
and column opposite reference point A, and that row and that forn = 1. K - 1. Since,foranyn,g(J- 1,n)is the only
column are reconstructed bv using reference point A. unknown in Eq. (15), and since A i 0, g(J - 1, n) is uniquely

The value of A can be obtained as follows: From Eq. (2), determined from Eq. (15). Thus the values ofg(m, n) in
it is seen that there is only one nonzero term in the summation
for the upper left corner point in the autocorrelation: c m - 1) aoreon.

(J - 1) of the autocorrelation.

rl(-J + 1, K - 1) = g(1, K)g*(J, 1) = B*g(1, K). (8) The reconstruction algorithm continues in the manner
described above. In the fourth step, one can recursively solve

Also, from Eqs. (6) and (7), for g(2, n) using the latent reference point B and the values

rj(J, 1) = A*g(J, 1) = A*B, (9) ofr/(-j+2, n-1),n=K-1,K-2,. 2,1. Inthe fifth
step, one can solve for g(J - 2, n) using the latent reference

rt(1,K) = 4*g(1, K). (10) point A and the values of r/(J - 2, n),n = 1 ... K - 1. One

Combining Eqs. (8)-(10) yields ,ssuming that rf(-J + 1, K continues the procedure until all the columns ofg(m. n) are

1 0, reconstructed, giving a complete and unambiguous recon-
struction of g(m, n), and therefore of f(m, n.

lAP = rl (J, 1)rf*(1, K) 011) Ifg(1,K) 0, then one can alternatively use that point as
rt*(-J + 1. K - 1) B and perform the reconstruction as described above, but

Since without loss of generality we can arbitrarily fix the phase reversing the roles of the rows and columns.
of any one point in f(m, n), we set the phase of A equal to zero; It was recently noted that Eisenstein's theorem allows for
A is then gi,. . unambiguously by the positive square root of the rectangular region of support (see Fig. 1) to be extended
Eq. (11). If ,i-J + 1. K - 1) =0. then one can obtain a over fin the same column as) point A. However, in that case.
similar expression for JAl

2 using the first nonzero point, rf(m, there is no simple recursive algorithm for reconstructing the
K - 1), to the right of rf(-J + 1, K - 1). Since A is known, object.
L:(4. n) and g(m, K) can be determined unambiguously from
Eqs. t6) and (7). Note that B = gJ, 1) = r/(J, )/A *. B. Support Uniqueness for Fiddy-Brames-Dainty

Having the values of the top row and rightmost column of Objects
glm. n), one can then solve for the leftmost column in the In the reconstruction method described above, it was im-
second step of the algorithm. From Eq. (2), the point of the plicitly assumed that the support of the object function was
autocorrelation just below rj(-J + 1, K - 1) has only two known. However, as will be shown by what follows, such an
nonzero terms, assumption is not necessar, since an FBD object can be

(-4+1, K-2) g(, K)g*(J, 2) + g(,K-)g*(J1). shown to be an FBD object from its autocorrelation. In order
to use theorems' relating to reconstructing the support of an

12 object from the support of its autocorrelation function, during

Solving, the discussion of the object and autocorrelation supports we
assume that the (bject function is real and nonnegative. tit

g l. K - 1) = frf(-J + 1, K - 2) - g(l, K)g*(.1. 2)I/B*, might happen that what follows may, with appropriate rood-
(13) ifications, also be true for complex-valued objects: but this

where g1,, U = B. Since all the quantities of the right-hand would require further development.)

side of Eq. (13) are known and B e 0. one can unambiguously Given only the support of the autocorrelation. one can

compute gl, K - 1). Similarly, the next lower point in the usually only put an upper bound on the support of the
object. Such upper bounds, sets that can contain translates
of the supports of all possible solutions, we refer to as locator

riI-,] + 1, K - 3) = gtl. K)g*(J. 3) + g(1, K - 1 )g*(J. 2) sets. One such locator set is the intersection of the autocor-
+ g(I. K - 21g*(J, I I (14t relation support with a translate of itself, where the translate

is such that the (enter of the second autocorrelation support
Since all the quantities in this linear equation are known ex- is within the first aut ocorrelat ion support. ' Assuming that
cept forg(l, K - 2), and sinceg.(J, 1) * 0, one can solve tin- ri.-J + 1, K - 1) x 0. and translating the one autocorrelation
ambiguously for g( 1, K - 2). In a similar fashion, one can support so that it is centered at (-.4 + 1. K - 1., one arrives
recursively solve for all the values 041. n) (the first column on at the locator set shown in Fig. 2 for the case of the FBI) object
the left) using the values of r/l-J + I. n - 1) in this second support shown in Fig. 1(h). In addition. since the autoc)r-
step of the reconstruction. In a sense the column m = 1 was relation is 2,1 + 1 pixels wide and 2K + I pixels high. the ob.ct

solved using the latent reference point B, which required the must beJ + 1 pixels wide and K + I pixels high, Since the
solution of column m = 4 before it could become effective, object support must be contained within the locator set shown

Having the first column on the left and the first column on in Fig. 2, which is J + 2 pixels wide and K + 2 pixels high. t h-
the right ofg(m, n ), one can then solve for the second column object support must include eit her the lower left point fr the
on the right in the third step, using A as the latent reference upper right point but not both. Keeping -it her one oft h-se

... - . ..

• ::.........-......-......- ...........-...... . ... .. ... ... ,.. ,. , -.
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shown that for this particular object shape the boundaries can
**S S • be reconstructed in a simple way,' 4 assuming A, B, C - 0.

* 5 0 5 B Since the vector spacings between points A and B, B and C,
and C and A are each unique, from the corner points in the

* 0 S 5 0 autocorrelation, as shown in Fig. 4(b), we have

Fig. 2. Locator set containing all possible solutions, used to show r(0, K) = f(0, K)f*(0, 0) = CA*, (16a.
that the support solution is unique. r(J, -K) = f(J, 0)f*(O, K) = B('*, (161h"

r(J, 0) =f(J, O)f*(0, 0) =BA*. (16c)

* s * * •Combining these gives
A 1 2 (0, K)r(J, 0)

, , , , •r(J, -K)

0 (a) J (c) Without loss of generality the phase of A can be chosen to be
zero, and then A is given by the positive square root of Eq.

(17). Then we can also compute

B = r(J,O)/A*, (18a)

C = r(O, K)/A*. (18b)

Olt Then the values of the leftmost column of the object are given

by

f(0, n) = r(-J, n)/B*, (19) 6

the values of the bottom row are given by

) f(m, 0) = r(m, -K)/C*, 20)

Fig. 3. Alternative case. (a) Object support; (b) autocorrelation and the values of the diagonal are given by
sul)porl: Ic) locator set. f(mK-m)=r(m,K-m)/A*. 21.)

two points and discarding the other, one is left with the sup- From this point one could determine the remainder of the
port of the object (or the 180* rotated version-the twofold object by solving systems of equations,,' ,14 but an easier way
ambiguity), Suppose, on the other hand, that ri(-J + 1, K
- 1) = 0. For example, suppose that the object support is that K -- =C= f O,K)
shown in Fig. 3fa). Then the autocorrelation support is that
shown in Fig. 3(h). A locator set, formed by taking the in- . . .
tersection of this autocorrelation support with one translated ....
to be centered at the first nonzero point in row (K - 1), is
shown in Fig. (hc As in the case of Figs. 1 and 2, sincethe A=(0,O) B...... Bf(J,0)
autocorrelation is 2K + 1 pixels high, the object must be K + 0_... .. ___" "-'
I pixels high, and therefore either the lower right or the upper o (a) J
left point I but not both) in Fig. 3(c) must be within the object
support. Suppose we take the lower left point as being within r(-J,K)=CB'
the object (choosing the upper right point will result in the *

I8l11 rotated solution). Then, since the autocorrelation is 2J
+ I pixels wide and therefore the object must beJ + 1 pixels ........ .. . .
wide. the object must be contained within the first J + I col- ........ ....
umns on the left of Fig. :1c), which is just the support of the ........ . . " -

object as shown in Fig. : a). From these examples it can be ... l0BA
seen that, in general, if the object is an FBI) object, then its ---
support can be reconstructed from the autocorrelation func- o o . . . . . . . .
tion. from which it is also evident that the object has an FBD ........
support.

C. Triangular O bjects . . .. -.

)t her types ofobjects. in addition to FBI) objects, can be re- . .
,onstructed by the recursive met hod. In this and the next . . .

section the re(,nst ruction ,,f t other classes ofobjects are (b) (J,-K " "BC "
shown. Consider. tr example. objects whose support is Fig. I. Trianguilar hapld l("4wI a) Obie' -ippri: iqwt ,Li,, 
contained in the triangular shape shown in Fig. 4a). As- rehIn twp,,ri Th . ,,h(, t i-, 1% I ,i mi 4 ,, i riaiwiilair -I14''"4
sunling that the objects support is kotwn ti prori, it has been -hlt,,ni re,,,nI irut.I I rI .( in- in rr-.i I,, nh" "

. .. . . : ?
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1 1 1 If one started with a random object having the same support

2 2 1 3 1 as the object in Fig. 5(b), and if one incorrectly assumed that
the object had the same triangular support as the object in Fig.

1 2 1 1 1 5(a), then one would obtain what at first glance would appear -

(a) (b) to be a triangular-shaped solution. In the process of calcu-
lating the solution one would use only the points on the pe-
rimeter of the autocorrelation function, with which the "so-

1 2 1 lution" would be consistent. However, on further inspection

2 8 8 2 one would usually find that the triangular-shaped solution is
inconsistent with the interior points of the autocorrelation

1 8 15 8 1 function. Only in the unlikely event that the original object's

2 8 8 2 1 Fourier transform is factorable would the triangular-shaped
solution be completely consistent with the autocorrelation

1 2 1 1 1 function. Therefore if the given autocorrelation function
(W) (d) admits to a possible solution by the recursive method, then

Fig. 5. Specific triangular-shaped object. (a) The object; (b) a one should reconstruct the solution with the assumed support,
second nontriangular-shaped solution; (c) the common autocorrela- then compute its autocorrelation function and compare it with
tion function; (d) the function used to synthesize objects shown in (a) the given autocorrelation function to determine whether the P
and ibi. assumed support is valid.

is possible if one cleverly chooses the order in which the D. Another Case
equations are solved. In particular, only one linear equation For a final example, consider objects contained within the
with one unknown at a time need be solved, and the solution support shown in Fig. 6(a). Comparing it with Fig. 1 (b), it
at each step is unique, if one solves in the following order. In would be a FBD object if it were not for the fact that B = 0.
a similar manner as was done for the FBD objects, solve for Assuming that the support of the object is known, it can be
the points in column m = 1 using B as a latent reference point, reconstructed by the following recursive steps if points A and
and solve for the points in row n = 1 using C as a latent ref- B' * 0 and if either point C' or C" 0. First f(J, 2) .. f(J,
erence point. Next solve for the points in column m = 2 using K)andf(2, K). f (J - 1, K)are solved using A as the ref-
B as a latent reference point, and solve for the points in row erence point. A can be determined from an equation similar
n = 2usingC asalatent reference point. This procedure is toEqs. (ll)and(17). NextC' =f(1,K - 1),thenf(1,K -2),
continued until all of f(m, nI is reconstructed. Other or- ... ,then f(1.2) are solved using B' as the latent reference

derings for the recursive solution of the equations are also point. Next f(J - 1, 1) is solved using C' or C" as the latent
possible. reference point. Next f(1, 1) is solved using B' as the latent -.

The solution given above for the triangular-shaped object reference point. Next f(d - 1. 2). f(J - 1, K - 1) are
is unique among objects having that support but may not be solved using A as the latent reference point. Then the pattern
unique among all objects. Momentarily restricting f(m, n) repeats: solve forf(2, K - 1). f(2,2) recursively using B', .-.-. "
to the case of nonnegative objects, one can use the autocor- then solve for f(J - 2, 1) using C' or C", then solve for f(2, 1.
relation support tri-intersection reconstruction for convex
sets i'' to show that there exists a family of object supports that C' C' C' D
have autocorrelation supports equal to the one shown in Fig. K. K. *

4(b). One member of that family is the original object support
shown in Fig. 4(a). Another member is an object support C
resembling the autocorrelation support shown in Fig. 4(b) but . B.
only half its size. For these latter members there is no simple 0, 0
recursive reconstruction algorithm as there is for the trian- AA J
gular-shaped object. (a) (b)

Further insights can be obtained by analyzing a simple case.
A case for which there are exactly two different solutions (not
counting 1841°-rotated versions) can be obtained by starting K- •
with nonsymmetric functions hi(x, Y) and h 2 (x, Y) whose • • . • .

Fourier transforms are nonfactorable and generating a first . . . . *
object.which ishI(x.i convolved with h.(x,yand asecond * * * *
object, which is h 1(x. y) convolved with h 2(-x, -yN (i.e.. the .... ....
cross correlation). " Two such objects, their common auto- * * * , • 9 9 •

correlation function, and theh I(x.v) = h(xv) used togen- * * * * • • *
erate them are shown in Figs. 5(a) through (d). respectively. * * * * * *

In t his case one obtains the "unique" solution shown in Fig. • • ° °
7, a i triangular support is assumed. and the "unique- solu- (c)
ion ,hown in Fig. )ih if the only other possible support is "t--a i i(l.Fig. ; :\nthe'r +'e- ( eated l t) .hjett ,. lai ()hiec t +up)rt '.

nh e lltrnativc nip,,rt rec',,siroutin it aot,.',rr-laiwn uplwrt
Sime reltixel% few 2.1) objects have faclorable Fourier lh,. (-h'Iit re -itruted fr'm it. mt,,trrilaiion liotimi. .ith

transl,,rms, the an igiti i, example 5hiwn in Fig. 5 is tintisui l. Ih -. 1...1h ,

::. . . . . . .-. . . . ..-. . . . ..)-. : ::::::::::: . :....::,..: ::.
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using B', then solve for f(J - 2. 2),. f(J - 2, K - 1) using to only a relatively' small number iof tvIpes ofie( tsc How
A, etc., until all the columns are solved, ever, the approach of carefUllv -selecting the o-rdvr in "bih It h(

The solution for this object is unique among objects having equations are solved should be helpful tin the naire gt neral tit
support contained within the support shown in Fig. 6(a). of Dallas's method by limiting the growth ot t he tree (-t silo

*Howuver, another support may also be possible. In a manner tions;'
* similar to that used in connection with Figs. 1-3, the possible

support solutions can be narrowed down to those of Fig. 6(a)
and Fig. 6(b), given the autocorrelation support shown in Fig. ACKNOWLEDGMENT
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Appendix C

HOLOGRAPHIC RECONSTRUCTION WITH LATENT REFERENCE POINTS

J.R. Fienup

Presented at the Annual Meeting of the Optical Society of America,
New Orleans, Louisiana, October 1983; Abstract: Journal of the Optical
Society of America 73, 1861 (December 1983).

MH9. Holographic Reconstruction with Latent Reference
Points.' J. R. FtENVP, Env-ironmental A'escarch In.stiuir tif
Michigan, P.O. Box 8618, Ann Arbor, Afichtgni 46s107 - Inibe image
plane of a Fourier-transform hologram, one finds the Awut icrrelatiiin
of the object -plane distribution (the object pluis a referente point)i,
which includes the auitocorrelation of the object, the crosscorrelat ion
of the object with the reference point (i.e., the desired image), and the
conjugate image. When the reference point is insufficiently offs;et
from the object, then a straightforward reconstruction is frustratled
by the overlap of the desired image with the aiitocorrelation term
One then must solve the Fourier- phase retrieval problem or eiti~al-
entlv reconstruct the object pllane distribution from its iioiiiorre.
latioin function. For certain cases there is a unique reli woiship bet
tween the Fourier-plane intensity% and the obiect planef dist ributin
even when the reference point jclose toi the. object (hence it is only
a latent reference point) F xamples of this are object plane- di-tri
butions whose Fourier transform., satisfy Eisenxtein's criterin , For
these and certain other t,% pes oif bhiect-plane distribuions. oiie c-an
dig itally reconstriuct the oibject -plane d ist ribhut io n from its a itoucor
relation functioin using a recursive algorithm. This also constitute,
a prooif oif the uniquieness of phase retrieval for these types oif
object -plane distributiiins. The algorithm is Similar ti Dallas' al-
giirithm except that it inviilves solving only* one linear equatiiin at a
time. It has applications; in holography, ast ronomy, and wave- front
sensing. (13 min.)

T his resi',rch -. a suro ttT -e h% the t S Ai.: Force Maite of Scientific Ri-

M A IF'ddN. B J Itrarie,, auit 1 C 1Daunt%. Ow~ LetL A. 9C t198:0
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EXPERIMENTAL EVIDENCE OF THE UNIQUENESS

OF PHASE RETRIEVAL FROM INTENSITY DATA

J.R. Fienup
Environmental Research Institute of Michigan
P.O. Box 8618, Ann Arbor, Michigan 48107, USA

Summary. An increasing body of theory indicates that the
phase retrieval problem usually has a unique solution for
2-D objects. In this paper experimental reconstruction
results that support the uniqueness theory are shown.

1 INTRODUCTION

In both optical and radio astronomy, sometimes one can accu-

rately obtain the modulus of the Fourier transform (i.e., the magnitude
of the complex visibility function) of an image, but not the Fourier
phase. In order to obtain an image it then becomes necessary to re-
trieve the Fourier phase. Since the autocorrelation function can be
computed as the inverse Fourier transform of the squared Fourier modu-
lus, the problem is equivalent to reconstructing an image from its auto-
correlation.

In this paper we are concerned with the phase retrieval problem in
optical astronomy, in which case one cannot rely on such aids as closure
phase (Jennison 1958).. However the results shown here do have relevance
to radio astronomy as well.

Several methods have been put forward for solving the phase retrieval
problem (Liu & Lohmann 1973; Napier & Bates 1974; Frieden & Currie 1976;
Baldwin & Warner 1978; Fienup 1978, 1979, 1982; Bates et al. 1982a). In
addition there are a number of reconstruction techniques that depend on
the specific method of data collection, for example, astronomical
speckle interferometry (Bates 1982b). Of the methods that would work
for the most general case, the iterative input-output Fourier transform
algorithm (Fienup 1978, 1979, 1982) appears to be the most practical.

When any of the reconstruction algorithms finds a solution, the question
remains: is it the only (unique) solution or is it one of many possible
(ambiguous) solutions? In Section 2 the theory of the uniqueness will
be briefly reviewed. Then in Section 3 experimental reconstruction
results will be shown that are consistent with the theory that the 2-D
case is usually unique. in addition, experimental reconstruction
results are shown that indicate that noise in the Fourier modulus data
does not radically change the uniqueness of the solution.

...............................................................................
*. -!
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Fienup: Experimental uniqueness of phase retrieval

2 UNIQUENESS THEORY

When we speak of the reconstruction being unique or ambig-
uous, we ignore translations and 1800 rotations since neither of these
operations affects the Fourier modulus. Here we are also assuming that
the object has a finite spatial (or angular) extent.

The one-dimensional (l-D) phase retrieval problem has long been known to
be highly ambiguous (Walther 1963). Only for the special cases of
objects known to consist of sufficiently separated parts or nonnegative
objects having sufficiently separated parts is the 1-D phase retrieval
problem usually unique (Greenaway 1977; Crimmins & Fienup 1983).

The 2-D case is quite different. This can best be understood from the
theory developed by Bruck and Sodin (1979). They considered the special
case of an object sampled on a rectangular lattice. For the 1-D case
the Fourier transform can then be expressed as a polynomial of order M
of a single complex variable, and such a polynomial can always be fact-
ored into M irreducible factors (by the fundamental theorem ofMajgebra).
They showed that this implies that in the 1-D case there are 2 possi-
ble solutions, although not all of those solutions would satisfy a non-
negativity constraint (Bates 1969). On the other hand, polynomials of
two complex variables having arbitrary coefficients are only rarely
factorable. Consequently the 2-D case is usually unique. Although the
2-D theory for continuous functions has not yet been fully developed, it
is likely that a similar result will hold.

Of course one can always fabricate 2-D examples that are not unique. An
example is an object formed by convolving two nonnegative functions. A
second object, formed by convolving the first nonnegative function with
an inverted (i.e., rotated by 1800) version of the second nonnegative
function, has the same Fourier modulus as the first object. Another
method of synthesizing ambiguous cases was given by Huiser and van Toorn
(1980). However, these fabricated ambiguous objects are very special
cases--most 2-D objects do not fit into these categories.

There are also a number of classes of objects for which the phase re-
trieval problem is known to be unique (as opposed to just being usually
unique). For example, if the object includes an unresolved (delta-
function-like) point far enough away from the rest of the object, then P
the autocorrelation includes the rest of the object as one of its terms
(Liu & Lohmann 1973), analogous to holography. It has also been
recently discovered that for objects having a special support there is a
unique reconstruction even if the reference points are very close to the
rest of the object (Fiddy et al. 1983). The support of an object is the
set of points over which it is nonzero, i.e., its shape. Also using
latent reference points it can be shown that these and other objects
having certain supports can be uniquely reconstructed from their Fourier
modulus (Fienup 1983a). These recent results point to the importance of
the support of an object in determining whether the object can be
uniquely reconstructed from its Fourier modulus. Methods for recon- P
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structing support information without resorting to a complete
reconstruction are also being investigated (Fienup et al. 1982).

3 UNIQUENESS EXPERIMENTS

3.1 Iterative reconstruction algorithm

One approach to determining whether most objects of interest
are uniquely reconstructable from their Fourier modulus is to perform a
number of reconstruction experiments. This is now possible due to the
existence of a practical reconstruction algorithm, the iterative Fourier
transform algorithm (Fienup 1978, 1979, 1982).

The iterative Fourier transform algorithm uses all the available mea-
surements and a priori information to arrive at a solution. In the S
Fourier domain one has the measured Fourier modulus data, which is an
estimate of the true modulus of the Fourier transform of the object. In
the object domain one has the a priori constraint that the object's
spatial (or angular) brightness distribution is a nonnegative function.
From the Fourier modulus data one can compute an estimate of the ob-
ject's autocorrelation function. From the autocorrelation one can place .
upper bounds on the diameter of the object (only in special cases can
the support of the object be readily determined from the support of its
autocorrelation) (Fienup et al. 1982).

The iterative Fourier transform algorithm is a modification of the
Gerchberg-Saxton (1972) algorithm that has been used in electron micros- 0
copy and for other applications (Fienup 1983b). The simplest version of
the iterative algorithm consists of the four following steps. (1) An
estimate of the object (an input image) is Fourier transformed. (2) The
resulting Fourier-domain function is forced to conform to the measure-
ments by replacing the computed Fourier modulus with the measured Four-
ier modulus. (3) The result is inverse Fourier transformed, yielding an .
output image. (4) A new input image is formed by forcing the output
image to conform to the object-domain constraints, i.e., it is set equal
to zero where it is negative or where is exceeds the known diameter
(i.e., the support constraint). This algorithm, which we call the
error-reduction algrithm, can be proven to converge in the sense that
the error at t k iteration is always less than or equal to the error •
at the (k - 1) iteration. Here the error is defined as the amount by
which the computed Fourier modulus differs from the-measured Fourier
modulus or az the amount by which the output image violates the
object-domain constraints. However, in practice the error-reduction
algorithm usually converges so slowly u at it is impractical for this
application (Fienup 1982).

Fortunately there exist a number of accelerated versions of the algo-
rithm which converge in a reasonable number of iterations. To date the
fastest version of the algorithm is the hybrid input-output algorithm.
Its first three steps are identical to those of the error-reduction
algorithm described above. The fourth step of the hybrid input-output

-.
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algorithm consists of forming a new input image that is equal to the
output image wherever the output image satisfies the constraints, and is
equal to the previous input image minus a constant factor times the
output image wherever the output image violates the constraints. Any
value between 0.5 and 1.0 works well for constant factor, which is
similar to a negative feedback parameter.

In one series of trials, the algorithm was run on a fabricated Fourier S
modulus which was known to have two solutions. One of the two solutions
was reconstructed in about half of the trials and the other solution was
reconstructed in the other half of the trials. Which of the two solu-
tions was obtained depended on the array of random numbers used as the
initial input to the algorithm. Therefore we believe that if there are
multiple solutions, then the algorithm is equally likely to find any one
of them (if the initial input is sufficiently random and unbiased), and
if run enough times with different initial inputs, it will probably find
all of them. In a practical reconstruction situation in which the solu-
tion is not known beforehand, if one were to run the algorithm two or
three times, each time using a different array of random numbers for the
initial input, and if the reconstructed images were the same each time, S
then one would be highly confident that one had found the solution and
that it is unique (Fienup 1979).

A problem with experimental reconstruction experiments is that there is
no guarantee that the iterative algorithm will converge to any solution,
even when an accelerated version of the algorithm is used. One can
t~ink of the reconstruction algorithm as an iterative search through an
N -dimensional parameter space (each dimension or parameter correspond-
ing to the value of one of the pixels of the image), seeking to minimize
the error of the estimate. While searching for the global minimum of
the error, the algorithm could stagnate at a local minimum of the error
in that N -dimensional space. The likellhood of stagnation and the
success of the algorithm depend on the N -dimensional topography of the
error function, which varies from one type of object to another.
Therefore, for particularly difficult objects, i.e., ones for which the
error has many local minima, one may not be able to test for uniqueness
since the reconstruction algorithm fails. Fortunately such a problem
has occurred only occasionally for the types of objects examined.

One particular convergence problem has occurred on several occasions.
Sometimes the algorithm stagnates at a deep local minimum at which the
output image resembles the original object but with a pattern of stripes
superimposed. A similar phenomenon has occurred in other reconstruction
situations (Cornwell 1983). In most cases the stripes are of low con-
trast, superimposed on an otherwise excellent reconstructed image, and S
are of little concern. In other cases the stripes are of high enough
contrast to be objectionable. When the Fourier modulus data is suffi-
ciently noisy, then the stripes do not appear (Feldkamp & Fienup 1980).
The nature of the stripes is as yet not fully understood and methods of
avoiding them remain to be developed. "
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An example of the stripes phenomenon is shown in Figure 1. Figure l(a)
shows the original object and Figure l(b) shows a reconstructed image,
which appears to be quite faithful. Figure l(c) shows the same recon- --

structed image, but heavily overexposed, in order to emphasize the
low-contrast vertical stripes that are present, although difficult to
discern, in the image. Figures l(d-f) show the overexposed reconstruct-
ed images resulting from three other trials of the algorithm, each of
which was initialized with a different array of random numbers. In
each of these three cases the reconstructed image contains a more easily
discernable pattern of stripes, but the spatial frequencies and orienta-
tions of the stripes are different in each case. The stripes extend U:
throughout image space (although they are weaker away from the support
of the object), and therefore by inspection of the reconstructed images
it is possible to determine that the stripes are an artifact rather than
a true feature of the object. Furthermore, it is possible to discern
the true image from the stripes since the stripes change from one recon-
struction to the next, but the true features of the object are present
in all the reconstructed images.

3.2 Experimental uniqueness results for various objects

The iterative reconstruction algorithm was used to recon-
struct a number of different objects from their Fourier modulus. The
objects examined are of a very practical and interesting class:
digitized photographs of satellites. They also share a feature that we
suspect makes them "good" objects to reconstruct: they have interesting
(i.e., complicated) shapes.

A typical result is shown in Figure 2, in which (a) is the original
object and (b) is the reconstructed image (Fienup 1981). For this and
almost all of the cases examined, the reconstructed image looks much
like the original object except for differences that could be attributed
to stripes. For example, horizontal stripes are evident over portions
of the reconstructed image shown in Figure 2(b). Therefore, except for
the presence of the stripes artifact which we believe is a character-
istic of a local minimum rather than an inherent ambiguity, most objects
of this type are uniquely related to their Fourier modulus.

There are exceptions, however. Figure 3 shows one case that worked
particularly poorly. The object shown in Figure 3(a) is nearly centro-
symmetric. Figure 3(b) shows the reconstructed image, which is not very
faithful. This particular case has similarities with the ambiguous case
fabricated by Huiser and van Toorn (1980). From this we see that, al-
though ambiguous cases may be unusual, they are by no means nonexistent
in the real world.

3.3 Experimental uniqueness in the presence of noise

As with any reconstruction method the sensitivity of the
algorithm to noise is a major point of concern. Reconstruction results
using noisy Fourier modulus data have shown that the iterative Fourier

.-=
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Figure 1. (a) Original object; (b) image reconstructed

from Fourier modulus using iterative algorithm; (c)-(f)
four images reconstructed using different starting
inputs--these pictures were intentionally overexposed in
order to emphasize the stripes.

'.41

I

Figure 2. (a) A typical

object; (b) image recon-
structed from Fourier
modulus.

Figure 3. (a) An atypical
object, for which the re-
constructed image (b) does
not resemble the object.

..-
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transform algorithm is not highly sensitive to noise (Fienup 1978,
1979). In this section the results of a systematic study of the noise
sensitivity of the reconstruction (Feldkamp & Fienup 1980) are
summarized.

When noise is present in the Fourier modulus data, then there is
generally no solution that is completely consistent with both the
measured data and the constraints. For example, an autocorrelation
function computed from a noisy Fourier modulus would be very likely to
have some negative values for the largest separations. Obviously no
nonnegative object can have an autocorrelation having negatives; there-
fore there could be no nonnegative object consistent with the noisy
Fourier modulus. Nevertheless the algorithm searches for a solution
that is most consistent with the measured data and constraints, and in
doing so it can arrive at a useful image.

Fourier modulus data was simulated to have the type of noise that would
be present in astronomical speckle interferometry. The object shown in -

Figure l(a) was convolved with 156 different point-spread functions to
produce 156 different blurred images. Each of the point-spread func-
tions represents a different realization of the blurring due to the
turbulent atmosphere. The widths of the point-spread functions were
comparable to the width of the object. The blurred images were then
subjected to a Poisson noise process to simulate the effects of photon
noise. The degraded images were then processed to produce a noisy
Fourier modulus estimate by Labeyrie's (1970) method, as modified by
Goodman and Belsher (1976) to eliminate the bias noise term from the

squared Fourier modulus.

Figure 4 shows a noise-free Fourier modulus (a) and three examples of
the simulated noisy Fourier modulus estimates (b)-(d) with increasing
noise. Figure 5 shows the original undegraded object (a) and three
images (b)-(d) reconstructed from the respective noisy Fourier modulus P
estimates of Figure 4. For the case shown in Figures 4(b) and 5(b),
which represent a realistic amount of noise for this situation, the
normalized rms error of the Fourier modulus estimate was 2.9% and the
reconstructed image is very good. For the case shown in Figures 4(c)
and 5(c), only 1/50 as many photons were assumed to be available, and
the rms error of the Fourier modulus estimate is a very poor 32%;
nevertheless the reconstructed image still retains some recognizable
features. In the case shown in Figures 4(d) and 5(d), an extreme amount
of noise was present, and the rms error of the Fourier modulus estimate
is near 100%; since this Fourier modulus estimate does not resemble the
true Fourier modulus, then, as one would expect, the reconstructed image
does not resemble the original object. 3

4. CONCLUSIONS

Theory, which points toward the conclusion that a 2-D object
of finite extent is ordinarily uniquely related to the modulus of its
Fourier transform, has been supported by experimental reconstruction re-
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Figure 4. Fourier modulus estimates with noise, having rms
error (a) 0%, (b) 2.9%, (c) 32%, (d) -100%.

Figure 5. Images reconstructed from noisy Fourier modulus
estimates shown in Figure 4.

........ ...........
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suits. The vast majority of reconstructed images of satellites resemble
the original objects from which the Fourier modulus was computed. Fur-
thermore, contrary to some predictions (Huiser & van Toorn 1980), the
uniqueness properties do not change radically when noise is present.
Rather, as more noise is introduced into the Fourier modulus estimate,
the reconstructed image simply becomes correspondingly noisier, and
degrades in a gradual manner.
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Appendix E

COMMENTS ON
"THE RECONSTRUCTION OF A MULTIDIMENSIONAL SEQUENCE

FROM THE PHASE OR MAGNITUDE OF ITS FOURIER TRANSFORM"

J.R. Fienup

Reprintea from IEEE Transactions on Acoustics, Speech, and Signal
Processing ASSP-31, 738-739 (June 1983).
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Comments on "The Reconstruction of a Multidimensional
Sequence from the Phase or Magnitude of Its

Fourier Transform"

J. R. FIENUP

Abstract-When one imposes a nonnegativity constraint, one usually
can reconstruct a two-dimensional sequence of finite support from the
modulus of its Fourier transform using an iterative algorithm, even
when the initial estimate is an array of random numbers.

In a recent paper,' the description of an iterative algorithm
for reconstructing a sequence from the magnitude of its
Fourier transform unintentionally gives the appearance of dis-
cussing an algorithm published earlier [ I. In the following,
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the differences between the algorithm and experiments de- negativity constraint (as well as a support constraint). it took
scribed by Hayest and those published earlier [1] are clarified, many thousands of iterations for convergence 131. 16 1. There

Hayes' reviews both the problem of reconstructing a se- fore, if one were to employ the error-reduction algorithm
quence from the phase of its Fourier transform and the prob- without a nonnegativity constraint, then one would expect
lem of reconstructing a sequence from the magnitude of its convergence to take much longer, if it ever converges. Conse-
Fourier transform. For the latter problem, he describes an quently, it is consistent with our experience that the type of
iterative algorithm for solving the problem as follows. "Spe- reconstruction experiments performed by Hayes would he
cifically, this algorithm involves the repeated Fourier transfor- unsuccessful.
mation between the time and frequency domains where, in Of course, there are situations for which the nonnegativtit-
each domain, the known information about the desired se- constraint does not apply. Then one might wonder whether
quence is imposed on the current estimate. In the time do- it is possible to reconstruct a sequence of finite support from
main,.for example, a sequence is constrained to have a given its Fourier magnitude. Theory ([81, Hayes' ) seems to indicate
region of support whereas in the frequency domain, the that the solution will usually be unique. However. as shown
sequence is constrained to have a given transform magni- by Hayes, the error-reduction algorithm is not a practical ap-
tude."' He then shows examples where the algorithm de- proach to finding the solution. One might possibly succeed
scribed above fails. This failure should not reflect poorly on using an accelerated algorithm, such as the input-output al-
the earlier work [II since the algorithm described in the quo- gorithm or a gradient search method [61. but this is an area
tation above and the experiments performed by Hayes differ that needs further work.
in important ways from the earlier work. In Hayes experi- It should also be noted that in the phase retrieval problemn of
ments, both the type of information which was assumed to be X-ray crystallography, one reconstructs the three-dimensional
known and the reconstruction algorithm which was used electron density function from its Fourier magnitude For
differed from those of the earlier work I 11. that problem, one has the constraints that the electron densit-

Hayes is correct in statingt that the magnitude of the Fou- is nonnegative and that it consists of a discrete number of
rier transform is insufficient to uniquely specify a sequence; atoms. For that problem, a number of reconstruction nieth-
additional information or constraints are required. Depending ods have been developed [9]. For the phase retrieval problem
on the application, one often has available additional informa- in electron microscopy, for which both the wave function and d
tion or constraints, and a reconstruction may then be possible its Fourier transform are complex valued, one has the adh-
[21. [31. Two important constraints which often occur (as in tional constraint of knowing the magnitude of the wave tunc-
astronomy) are a known support (or bounds on the support) tion. For that problem, the error-reduction algorithn ha,,
of a sequence, and the constraint that the sequence be nonneg- been shown to perform very well [ 101. [1 1.
ative [4]. Unlike the algorithm used by Hayes,' the iterative In conclusion, Hayes' remark that " een for those ,e-
method described earlier [ 1 primarily uses the nonnegatvity quences which are uniquely defined by their magnitude. it ap-
constraint. Using the iterative algorithm, we have been very pears that a practical algorithni is yet to be developed for re- ]
successful in reconstructing two-dimensional nonnegative se- constructing a sequence from only its magnitude' is strr tl\
quences from their Fourier magnitude [11-161. In this case, true when no other information is available; however. tor a
the sequences must have finite support, but it is possible to number of important applications, there is auxiliary infor-
reconstruct them even when the support is not known. Ex- mation, such as a nonnegativity constraint, and practical re- +
cept for special cases, it is not possible to determine the sup- construction algorithms do exist.
port of a sequence from the support of its autocorrelation
(which is the inverse Fourier transform of the squared Fourier RIvi t..RI Nt S
magnitude) [7), so the support information is usually not
available anyway. One can only place upper bounds on the [II J R, lienup. "SpoC h 11i t ic' Ihr,,1igh tie turhkr!

support [ 71. If an upper bound on the support is utilized dur- atmosphere." Opt. fpg.. ,ol 18. pp 529-534, Sept -Ot 1 1-9
ing the iterations, then the algorithm converges faster (in 121 , "Iteratisc method applied to illedL reC 'tttrLiItitI .ld t ,'

about 100 or 200 iterations for our work) than when using conputer-,encrated holograms.'' Opt -i.J,. unt 19. pp 2
only the nonnegativit, constraint (in which case we found that 3 . "Recon0truton and 198ntie"i, aljIlI,i t 111 I1LrJItlk,

several hundred iterations are required). algorithm.'" in Transf rtiations in Optical St, il P'o" 0o'M.
Unlike the algorithm used by Hayes, the iterative algorithm W I Rhodes, J R. I ienip. and l3 1 A Salch. I d, Bellihni

described earlier [ I I does not simply satisfy the constraints WA Soc. Photo-Opt. Instrunicn Fi nt . 1983
(nonnegativity and bounds on the support) in the time-domain 141 . "Reconstru tion it an oblct t froiti the tMo dii I It, I II
step of the iteration Such an algorithm, which we refer to as rtcr transforim." Opt. I.ett.. ol 3. pp 27-29 Jluh 198
the error-reduction algorithm, was discussed earlier I I I where 51 (. B I eldkatip and J. R, I tcnup. "Noise prp crtlc of iiace, r-
it is noted that. "For the present application, the error-reduc- construtted froii I ourcr imoduhis.'" in Proc 1900 tit Opt
tion approach requires an impractically large number of itera- ('omnput. ('lon.. SPII . ol 231. 1980i pp 84-93
tions for convergence,' It is only a version of the input-output 161 J1. R. inip. *'Phac retrieal viorimtttts ., tipari-n. .Ippl

Opt.. ,ot 21. pp 2758-2769. AI,.: 1. 1982
algorithm (11-[61 which is capable of converging in 100 or so 171 J R icniup. I R ('riniitiins. and %k thtf. ,iiki."Rctnt ti
iterations. tion of tire ,upport of an ,hjekt trim i c tippitrt i its ait ',r.

Hayes found that . if the initial estimate used in the relation.' J Opt Sm liner . ol 72. pp f io-6 24. Mis 1982
iteration has a Fourier transform with the correct magnitude 181 Yu M. tiru k aind 1 (, Sodin. "in f ti imhiitit\ of t ftct itiact
and either zero phase or random phase, then the iteration will tCsotstlloriitiot prhlcnti.' Opt ('o ttpti , kid If3i pp 31(14. VS.
not generally converge to the correct sequence."' However, Sept 1979
using the input-output algorithm with a nonnegativity con- 191 ( 1 It Stou t and I Iti Icnsn,c . XR i Stru(turu I)tcroit ,'itM

straint. we obtained good reconstruction results when the al- Nt, Y'rk M\itmil,in. 1968

gorithm was initialized with arrays of random numbers I I1- 1me R c rt hhetrii ,v Ai nd () S, tit h mi\ p,iat h d tl ,,rntv fi,r
thet dctcr nt' ionlllttl of| tIfl ' t Ir olI I livt' id dittrakih,' r~lnt

'  
+.ii

161 The algorithm has also been shown to be surprisingly picturc." Opti A. 1, 35. 11, 237-246. ITS'2
insensitive to noise [ 5 1. I , I , A ). Samton. ( uo putcr 7cchntqiu, to tmt , Pl o, i'i+,s, " " it?

When the error-reduction algorithm was used with a non- -lectront .trocopi Ncss rk .1 5 icid'ttls 197"
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AMBIGUITY OF PHASE RETRIEVAL USING BOUNDARY CONDITIONS
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AMBIGUITY OF PHASE RETRIEVAL USING BOUNDARY CONDITIONS

J.R. Fienup

Environmental Research Institute of Michigan
P.O. Box 8618

Ann Arbor, Michigan 48107

ABSTRACT

It is shown that knowledge of the edges of an object is not always

sufficient to uniquely reconstruct an object frnm the modulus of its

Fourier tiansform via the autocorrelation function. On the other hand,

in some cases not only can the boundary values be determined from the

autocorrelation, but also the object can be reconstructed uniquely, even

for complex-valued objects.

S''

S>

I.

.11



--RIM

1. Introduction

In a number of disciplines, including astronomy, x-ray

crystallography, electron microscopy, and wavefront sensing, one

encounters the phase retrieval problem. One wishes to reconstruct

f(m, n), an object function, from JF(p, q)J , the modulus of its Fourier

transform, where

F(p, q) = F(p, q)J exp [iip(p, q)] = E5[f(m, n)]

P-I Q-1

= Z, Z f(m, n) exp [-i2IT(mp/P + nq/Q)], (1)

m=O n=O

where m, p 0, 1, ... , P - 1 and n, q = 0, 1, ... , Q - 1. The discrete

transform is employed here since in practice one deals with sampled data

in a computer. The problem of reconstructing the object from its

Fourier modulus is equivalent to reconstructing the Fourier phase,

p(p, q), from the Fourier modulus, since once one has the phase as well

as the modulus, one can easily compute f(m, n) by the inverse (discrete)

Fourier transform. rf(m, n), the (aperiodic) autocorrelation of

f(m, n), is given by1

M-1 N-i

rf(m, n) : f(j, k)f (j -m, k - n) (2)
j=o k=O:

M-1 N-1

= f (j, k)f(j + m, k + n) (3)
j=O k=O

2
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= - '[iF(p, q)l2] (4)

where the asterisk denotes complex conjugate and where it is assumed

that f(j, k) = 0 for m outside of (0, M - 1] and for n outside of [0, N

- 1]. Note that in order to avoid aliasing in the computation of

'F(p, q) 2 it is necessary to have M < P/2 and N < Q/2. Since the

autocorrelation function is easily computed from the Fourier modulus by

Eq. (4), the phase retrieval problem is equivalent to reconstructing an

object from its autocorrelation function.

Several phase retrieval algorithms have been proposed, all of them

requiring some additional measurements or constraints on the solution.

Examples include a reference point at least one object-diameter from the

object2 (giving rise to the holography condition3 ), a second intensity

measurement in another plane 4 " (in electron microscopy or wavefront

sensing), nonnegativity and limited spatial extent68 (in astronomy),
9atomic models (in x-ray crystallography), objects consisting of

10collections of points having nonredundant spacings , and objects having

latent reference points 1 1 (not satisfying the holography condition).

For each of these situations there is a proof of uniqueness of the

solution that relies on the types of measurements made, on the a priori

information available, or on the nature of the reconstruction algorithm

itself.

Antoher proposed phase retrieval algorithm is a recursive one that

relies on a priori knowledge of the boundary conditions (i.e. the values

of the edges of the object). 12  The purpose of this paper is to show

that the general uniqueness claims made concerning phase retrieval using

boundary conditions are incorrect; but by the approach of using latent

reference points, special classes of objects can be shown to be .'-

unique, for complex-valued objects as well as for real-valued objects.

3



M'RIM

2. Ambiguity Using Boundary Conditions

In Reference 12 a recursive algorithm was put forward for

reconstructing an object from the modulus of its Fourier transform, via

the autocorrelation function, using boundary conditions, i.e., assuming

knowledge of the edges of the object. A real-valued object, f(m, n),

was assumed to be zero outside of the rectangular region of support O<

m< M - 1 and 0 < n < N - 1. The top and bottom nonzero rows, (m) =

f(m, N - 1) and a(m) = f(m, 0), respectively, and the leftmost and

rightmost nonzero columns, f(O, n) and f(M - 1, n), respectively, are

assumed to be known a priori. Rows 1 and N - 2 can then be determined

by solving a system of 2M - 1 linear equations in 2M - 4 unknowns. For

example, from Eq. (3) we have, for n N - 2, the second from the top
row of the autocorrelation:

M-1 N-l

r(m, N - 2) : f (j, k)f(j + m, k + N - 2)

j=o k=O

M-1 M-1~-' *
f*(j, O)f(j + m, N - 2) + f (j, 1)f(j + m, N - 1)

j =0 j =0

M-1 M-1

= , *(j)f(j + m, N 2) + z f 1)(j + m) (5)
j=:0 j=O ..

for m = -M + 1, ... , M - 1. These are 2M - 1 equations, one for each
value of m, in 2M - 4 unknowns, f(j, N - 2) and f(j, 1), for j = 1, 2,

M - 2. Recall that t(j), (J), f(O, N - 2), f(M - 1, N - 2),

f(O, 1) and f(M - 1, 1) are assumed known. After f(j, N - 2) and f(j,

1) are determined by solving the system of equations given in Eq. (5)

above, then one can solve for f(j, N - 3) and f(j, 2) using r(m, N - 3)
in a similar manner. The remaining rows of the object are solved

4
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recursively in a similar manner.

The method described above could work if the systems of equations

have a unique solution for the unknowns. Restricting the solution to

real-valued f's, a claim has been made that,12 "It may be shown,

however, that a sufficient condition for a unique solution ... to exist

is that a(m) and 3(m) not be identically zero and that a(m) not be

related to (M - 1 - m) by a constant scale factor." However, no proof

of that statement was provided. A counterexample to that claim is shown

in Figure 1. Figures 1(a) and 1(b) show two different functions having

the same boundaries as each other, and for both objects a(m) is not

proportional to B(M - 1 - m), and yet they have the same Fourier modulus

and the same autocorrelation function, which is shown in Figure 1(c).

Therefore knowledge of the boundaries is not necessarily sufficient

information for a unique reconstruction.

An infinite number of counterexamples can be generated. From the

theory of Bruck and Sodin 13 it is known that the solution of the phase

retrieval problem [but not necessarily of Eq. (5)] is unique unless the

Fourier transform of the object is a factorable polynomial, which is

unlikely to happen by chance for the two-dimensional case.

Factorability of the Fourier transform is equivalent to the object being

expressible as a convolution of two functions, and so ambiguous cases

can be constructed by forming an object by convolving (or

cross-correlating) two functions.14 The object in Figure 1(a) was

fabricated by cross-correlating the functions shown in Figures 2(a) and
2(b). The ambiguous solution shown in Figure 1(b) is the inverted

convolution of the functions shown in Figures 2(a) and 2(b). An

infinite number of other ambiguous examples can be obtained by replacing

the values 1, 1, 1 and 2 of the function shown in Figure 2(b) by other
values, with minor restrictions on those values.

5
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12
The recursive algorithm involves the solution of 2M 1 linear

equations in 2M - 4 unknowns. One problem with this is that for m = -M

+ 1 and for m = M - 1, Eq. (5) involves only the known boundary values

and not the unknowns. Therefore one has only 2M - 3 linear equations in

2M - 4 unknowns to begin with. A second problem is that upon inspection

of those equations one finds that, for the ambiguous case shown in

Figure 1, two or more of them are dependent equations. Since the number

of remaining linear independent equations is fewer than the number of
unknowns, the problem is underdetermined and multiple solutions exist.

Consider the particular example of Figure 1(c), for which one

searches for solutions of the form shown in Figure 2(c), having the a

priori known boundary values. Of the 2M - 3 = 7 linear equations of Eq.

(5), utilizing the second row of Figure 1(c), one finds that three are
dependent, leaving only four independent equations in six unknowns.

Therefore one can, for example, choose values a and b in Figure 2(c)

arbitrarily, and then the values of c, d, e and f are determined. At

this point the algorithm of Reference 12 would have been stopped.

However, if one continues to solve the equations using the next row of

the autocorrelation, then one arrives at a quadratic equation in one of

the variables yielding exactly two solutions, those shown in Figures

1(a) and 1(b).

From the example discussed above it is seen that the recursive

algorithm of Reference 12 is much like the recursive algorithm of

Dallas5 , in which a tree of solIjtions may grow with each iteration, and

ambiguities are resolved only if the tree can be pruned in later

iterations.

6
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3. Some Unique Cases

Despite the nonuniqueness demonstrated in the previous section,

there are some specific classes of objects for which the solution is
unique. These unique objects have supports (or shapes) of special

types.

Certain classes of objects having latent reference points can be
reconstructed using a simpler recursive algorithm than the one described

in the previous section. The simpler recursive algorithm selects the

order of the equations being solved such that at each step one must

solve only a single linear equation for a single unknown, which is a

trivial computation that always gives a unique result. It is required

that no division by zero be allowed and this is ensured by the

requirement that the values of the latent reference points not be zero.

The latent reference points act in a similar manner to reference points

for holography, only they do not initially satisfy the holographic

separation condition. Examples of objects that can be uniquely
15reconstructed in this manner include (Fiddy-Brames-Dainty ) objects

within a rectangle plus a point off one corner of the rectangle, and
11objects having other supports as well. In most cases the support of

the object must be known a priori in order to ensure that one obtains a

unique reconstruction, since it is usually not possible to deduce the
10support of the object from the support of its autocorrelation

However, for the Fiddy-Brames-Dainty1 5 objects the support can be

deduced from the autocorrelation support, and so the reconstriction in
11

that case is unconditionally unique. For these cases the objects may

be complex-valued, in contrast with the restriction to real-valued

objects for the reconstruction algorithm discussed in the previous

section. Furthermore, for these cases the boundary values need not be

known a priori since they are computed in the first step of the

recursive algorithm11'12

7
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4. Conclusions

Although boundary conditions are a powerful constraint for the

phase retrieval problem, it has been proven by counterexample that 0

knowledge of the boundary conditions (the values of the edges of the

object) is not sufficient to ensure a unique solution. In practice it

may be that a unique solution is usually obtained simply because 2-D

phase retrieval is usually unique even when the boundary conditions are 0

not known. 13  It is not yet known what extra constraints are necessary

to ensure uniqueness in general.

What seems to be more important to ensure uniqueness is that the 0

object's support be a member of a special class of supports. It is not

yet known in general exactly what properties the support must have

(except for the special cases mentioned in the previous section) to

ensure uniqueness; but it is known that objects with seDarated .
16,17supports are more likely to be unique (even in the 1-D case) and

objects having complicated supports tend to be easier to reconstruct

than objects with convex symmetric support in the 2-D case 18

The value of the recursive algorithms may be more in their

predictions of uniqueness than in their ability to reconstruct images,
11,12since they tend to be very sensitive to noise A more stable

reconstruction method would be the iterative Fourier transform

approach 6 which repeatedly reinforces both the measured data and the a

priori constraints on the reconstructed image.
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FIGURE CAPTIONS

1. Counterexample to uniqueness claims12. Two different objects

(a) and (b) have the same boundary values and also have the same

Fourier modulus and the same autocorrelation (c).

2. Functions (a) and (b) which generate the object shown in Figure
1(a) by cross-correlation and in Figure 1(b) by convolution.

The general form (c) of the objects which have the autocorrelation

shown in Figure 1(c).

11I
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2 3 3 3 1 2 3 3 3 1

3 7 4 4 2 3 3 6 6 2

3 6 5 4 2 3 4 5 6 2

1 2 2 2 1 1 2 2 2 1

(a) (b)

2 7 13 19 21 17 11 5 1

7 27 52 77 88 73 48 23 5

13 52 100 153 179 147 97 48 11

15 63 123 188 230 188 123 63 15

I1 48 97 147 179 153 100 52 13

5 23 48 73 88 77 52 27 7

1 5 11 17 21 19 13 7 2

(c)

Figure I Counterexample to uriiqueness claims. Two different objects,
(a) and (b), have the same boundary values and also have the same Fourier
modulus and the saIe autocorrelation (c).
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1 1 1 1

1 2 0 1 1 1

1 1 1 1 1 2

(a) (b) .

2 3 3 3 1

3 a b c 2

3 d f 2

1 2 2 2 1

(c)

Figure 2. Functions (a) and (b) which generate the object shown in
Fig. 1(a) by cross-correlation and in Fig. 1(b) by convolution. The
general furm (c) of the objects which have the autocorrelation shown
in Fig. 1(c).
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